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Abstract

Inequality proving, crucial across diverse scientific and mathematical fields, tests
advanced reasoning skills such as discovering tight bounds and strategic theorem
application. This makes it a distinct, demanding frontier for large language models
(LLMs), offering insights beyond general mathematical problem-solving. Progress
in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly
formal. We address this by proposing an informal yet verifiable task formulation,
recasting inequality proving into two automatically checkable subtasks: bound
estimation and relation prediction. Building on this, we release IneqMath, an
expert-curated dataset of Olympiad-level inequalities, including a test set and
training corpus enriched with step-wise solutions and theorem annotations. We also
develop a novel LLM-as-judge evaluation framework, combining a final-answer
judge with four step-wise judges designed to detect common reasoning flaws. A
systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality:
even top models like o1 achieve less than 10% overall accuracy under step-wise
scrutiny; this is a drop of up to 65.5% from their accuracy considering only final
answer equivalence. This discrepancy exposes fragile deductive chains and a
critical gap for current LLMs between merely finding an answer and constructing
a rigorous proof. Scaling model size and increasing test-time computation yield
limited gains in overall proof correctness. Instead, our findings highlight promising
research directions such as theorem-guided reasoning and self-refinement.
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Figure 1: Final-answer accuracy versus overall accuracy for leading LLMs across different categories
on the IneqMath benchmark of Olympiad-level inequality problems. Overall accuracy, measuring
both answer correctness and step soundness, is substantially lower than final-answer accuracy for
all model types. This highlights a critical gap: while LLMs may find correct final answers to these
inequality problems, their reasoning is often unsound. Each model used its optimal maximal tokens.
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1 Introduction

Mathematical inequalities are fundamental to diverse fields such as analysis, optimization, and
probability theory, with applications spanning scientific modeling, economics, and competitive
mathematics. Proving an inequality is a complex endeavor, demanding not just calculation but
a sophisticated blend of intuition for discovering tight bounds, strategic insight for selecting and
applying classical theorems (e.g., AM-GM, Cauchy-Schwarz), and precise symbolic transformations.
These skills are hallmarks of advanced mathematical reasoning, distinguishing inequality proving
from general math problem-solving. Automating this process would therefore have broad impact: it
could supply automated theorem provers (ATPs) with missing lemmas, accelerate formal verification
processes, and serve as a demanding testbed for general-purpose reasoners. However, despite
impressive advancements in LLMs like DeepSeek-R1 [11] and OpenAI o3 [44], as well as in ATPs
themselves [13, 15, 23, 31, 46, 67], automating inequality proving remains a challenging frontier.

A major bottleneck in advancing LLM capabilities for inequality proving is the scarcity of suitable
benchmarks. Existing resources fall short in several ways: general ATP collections like MiniF2F [74]
and ProofNet [5] contain few inequalities; synthetic datasets such as INT [58] and AIPS [57] offer
scale but may lack structural diversity due to template-based generation; and curated collections like
ChenNEQ [6] are often too small for extensive training. More fundamentally, most existing datasets
adopt a fully formal representation, where problems and proofs are encoded in systems like Lean [8]
or Isabelle [38]. While formal mathematical reasoning offers correctness guarantees and is a vital
research direction, LLMs, trained on vast corpora of natural language, often exhibit strong informal
reasoning capabilities. This suggests LLMs might solve problems informally even when struggling
with the exacting syntax of formal provers. Our work, therefore, aims to explore and benchmark these
informal abilities, complementing formal mathematical AI by focusing on a mode of reasoning closer
to human intuition and the preliminary, often less structured, stages of mathematical discovery.

To bridge this gap between formal rigor and intuitive problem-solving, we propose an informal yet
verifiable formulation (§2). Rather than requiring full, machine-checkable proofs within formal
systems, we reformulate inequality problems into two concrete, automatically verifiable subtasks: (i)
Bound estimation—determine the largest (or smallest) constant C that preserves the inequality; and
(ii) Relation prediction—identify which relation (>, ≥, =, ≤, or <) holds between two expressions.
Both tasks can be presented in natural language and LATEX, solved step-by-step by an LLM, and their
final answers (a constant or a relation symbol) can be automatically checked. This preserves the
creative essence of inequality proving while avoiding the heavy overhead of formal proof assistants.

Building on this formulation, we present IneqMath (§3), the first large-scale dataset of Olympiad-level
inequalities written entirely in informal language. The test set comprises 200 original problems,
each crafted and reviewed by IMO-level medalists to ensure both originality and difficulty. The
training corpus includes 1,252 problems sourced from advanced textbooks, automatically rephrased
by LLMs into our subtasks and then meticulously reviewed by human experts. A key feature is
that each training problem is accompanied by up to four step-wise solution paths, providing rich
data for training LLMs on fine-grained reasoning. Additionally, 76.8% of the training problems
are annotated with 83 named theorems across 29 categories relevant to their solutions. As shown
in Table 2, IneqMath surpasses prior resources in scale, diversity, and alignment with human-like,
informal problem-solving approaches.

However, producing the correct final answer is insufficient; the reasoning process itself must be sound.
To rigorously assess this, we introduce an LLM-as-judge evaluation framework (§4). This framework
comprises a high-precision final-answer judge to verify the answer equivalence, complemented
by four specialized step-wise judges for step soundness. These step-wise judges are designed to
detect the frequent reasoning flaws identified in our pilot studies: inappropriate reliance on toy case
examples, unaddressed logical gaps, unjustified numeric approximations, and numeric calculation
errors. Validated on manually labeled development set solutions, these judges demonstrate high
reliability (F1 > 0.9 on average) and offer a scalable method to scrutinize the deductive integrity of
LLM-generated proofs.

We evaluate 29 leading LLMs ranging from chat models to advanced reasoning LLMs, both open-
source and proprietary (§5). As key results highlighted in Figure 1, several key findings emerge. While
specialized reasoning LLMs (e.g., o1 [41]) achieve higher final-answer accuracy than general-purpose
chat models (e.g., GPT-4o [39]), this advantage often collapses under step-wise scrutiny. Once
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our judges inspect every reasoning step, overall accuracy plummets by up to 65.5%. Indeed, even
top-performing models like o1 achieve less than 10% overall accuracy (Table 4), exposing fragile
deductive chains and a significant gap between finding an answer and constructing a rigorous proof.

Our in-depth study (§5.3) reveals that while larger model sizes correlate with improved final-answer
accuracy, their impact on overall accuracy is limited (e.g., o1 achieves only 8.0% overall accuracy).
Similarly, extending test-time computation through longer reasoning chains offers diminishing returns
for overall correctness (e.g., o1’s 8.0% overall accuracy remains unchanged when scaling max
completion tokens from 5K to 40K, while o3 [44] saturates around 31%). These findings suggest
that current scaling approaches are insufficient for robust deductive reasoning in IneqMath. Instead,
we explore promising improvement strategies, demonstrating potential gains from methods such as
theorem-guided reasoning—by providing golden theorems (improving overall accuracy by up to 11%
for o3-mini [43] ) and critic-guided self-refinement (e.g., a 5% absolute increase in overall accuracy
for Gemini 2.5 Pro [19]).

In summary, our work makes four key contributions: 1) We introduce an informal reformulation of
inequality proving, decomposing the task into two verifiable subtasks (§2). 2) We release IneqMath,
an expert-curated benchmark of Olympiad-level inequalities and a training corpus enriched with
step-wise solutions and theorem annotations (§3). 3) We develop a modular LLM-as-judge framework
that rigorously evaluates both final answers and proof step soundness (§4). 4) We conduct a systematic
empirical study (§5) that exposes a pronounced gap between LLM performance and mathematical
rigor, highlighting avenues for future research.

2 Task Formalization: An Informal Perspective

Inequality proof problems require demonstrating that a specified inequality holds under given
conditions, such as proving a+ b ≥ 2

√
ab for all positive real numbers a and b. Traditionally, these

problems are formalized in proof assistants like Lean or Isabelle, represented as a tuple (S0, I, P ),
where S0 is the initial state, I is the inequality, and P is a set of premises. The proof process, often
modeled as a Markov Decision Process, constructs a step-by-step solution verified by the system.
However, this formal approach demands expertise in specialized tools, while informal proofs in natural
language, though more intuitive, are difficult to verify automatically due to their unstructured nature.

To address these challenges, we propose an informal perspective that reformulates inequality proof
problems into two verifiable subtasks: bound estimation and relation prediction.

IneqMath Training Example 1: Bound Problem

Question: Find the maximal constant C such that for all real numbers a, b, c, the inequality holds:√
a2 + (1− b)2 +

√
b2 + (1− c)2 +

√
c2 + (1− a)2 ≥ C

Solution: Applying Minkowsky’s Inequality to the left-hand side we have√
a2 + (1− b)2 +

√
b2 + (1− c)2 +

√
c2 + (1− a)2 ≥

√
(a+ b+ c)2 + (3− a− b− c)2

By denoting a+ b+ c = x, we get

√
(a+ b+ c)2 + (3− a− b− c)2 =

√
2

(
x− 3

2

)2

+
9

2
≥
√

9

2
=

3
√
2

2
.

Minkowsky’s Inequality Theorem: For any real number r ≥ 1 and any positive real numbers
a1, a2, . . . , an, b1, b2, . . . , bn(

n∑
i=1

(ai + bi)
r

) 1
r

≤

(
n∑

i=1

ar
i

) 1
r

+

(
n∑

i=1

bri

) 1
r

This bound estimation task involves finding an optimal constant for a given inequality. For example,
in a+ b ≥ C

√
ab for ∀a, b > 0, the objective is to find the largest C. Formally, a bound estimation

problem instance is a triple:

Πbound =
(
f(x), g(x), D

)
, where D ⊆ Rn.
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Here, f, g : D → R are two expressions involving variables x = (x1, . . . , xn) within a specified
domain D (e.g., xi > 0,

∑
xi = 1), and g(x) > 0,∀x ∈ D. The goal is to determine the extremal:

C⋆ = sup{C ∈ R : f(x) ≥ Cg(x),∀x ∈ D} or C⋆ = inf{C ∈ R : f(x) ≤ Cg(x),∀x ∈ D}.

The relation prediction task requires determining the correct relationship between two expressions.
For instance, given expressions f(x) = a+ b and g(x) = 2

√
ab, the goal is to identify the relation

(in this case, ≥) that holds for ∀a, b > 0. Formally, a relation prediction problem instance is a triple:

Πrel =
(
f(x), g(x), D

)
,

where f(x) and g(x) are expressions over variables x in domain D ⊆ Rn. The goal is to find the
relation between f(x) and g(x) (i.e. >, ≥, =, ≤, <, or none of the above).

IneqMath Training Example 2: Relation Problem

Question: Let a, b, c be positive real numbers such that abc = 1. Consider the following expressions:

b+ c√
a

+
c+ a√

b
+

a+ b√
c

( )
√
a+

√
b+

√
c+ 3

Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above
Solution: From the AM-GM Inequality, we have

b+ c√
a

+
c+ a√

b
+

a+ b√
c

≥ 2

(√
bc

a
+

√
ca

b
+

√
ab

c

)
=

=

(√
bc

a
+

√
ca

b

)
+

(√
ca

b
+

√
ab

c

)
+

(√
ab

c
+

√
bc

a

)
≥

≥ 2(
√
a+

√
b+

√
c) ≥

√
a+

√
b+

√
c+ 3

6
√
abc =

√
a+

√
b+

√
c+ 3.

AM-GM Inequality Theorem: If a1, a2, . . . , an are nonnegative real numbers, then

1

n

n∑
i=1

ai ≥ (a1a2 . . . an)
1
n

with equality if and only if a1 = a2 = . . . = an. This is a special case of the Power Mean Inequality.

These subtasks are chosen because they frequently appear in mathematical problem-solving, simplify
the evaluation process, and crucially, retain the core reasoning challenges inherent in original inequality
proof problems. An ideal LLM solution should not only produce the correct final answer but also
present a clear, logically sound, and complete derivation. This includes strategic application of
theorems, accurate symbolic manipulations and calculations, and justification of all critical steps.

3 IneqMath: The Inequality Problem Dataset

This section describes the data curation and statistics of IneqMath, a novel collection of inequality
problems designed to support the informal perspective on solving and proving inequalities.

Test data curation. To mitigate contamination from common sources (textbooks, contests, online
resources) potentially in LLM training corpora, we commissioned IMO-level medalists to design novel
inequality problems. These underwent rigorous review by a separate expert group and were validated
only upon unanimous confirmation of solvability, soundness, and ground truth correctness. Problems
identified as easier by experts were excluded from the test set (repurposed for development) to ensure
a high challenge level. See the developed curation tool in §A.1. We host an online leaderboard1 with
automatic submission and evaluation, providing a reliable and fair community platform.

1https://huggingface.co/spaces/AI4Math/IneqMath-Leaderboard
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Training data curation. Training problems were sourced from two advanced textbooks featuring
graduate-level and Olympiad-style inequality proof problems. We parsed these textbooks to extract
proof problems, their step-wise solutions, and relevant theorems. We developed two LLM-based
rephrasers to transform each source problem into two sub-tasks defined in §2: bound estimation and
relation prediction. For instance, a source problem like “Prove a+ b ≥ 2

√
ab for ∀a, b ∈ R+” would

be rephrased into a bound estimation task (e.g., “Determine the the maximal constant C such that
a+ b ≥ C

√
ab holds for ∀a, b ∈ R+”) and a relation prediction task (e.g., “Determine the inequality

relation in the expression a+ b ( ) 2
√
ab that holds for ∀a, b ∈ R+”).

Crucially, while rephrased problems are altered from the source proof problem in the format, they
preserve the core mathematical reasoning and solution steps—such as applying relevant theorems,
determining boundary conditions, and verifying inequalities. An annotation tool (see §A.1) was
developed to facilitate human expert review and correction of the LLM-rephrased problems. Extracted
theorems were curated, each including its name, a natural language definition, and a list of training
problems where it is applicable.

Key statistics. As shown in Table 1, the IneqMath dataset comprises 200 test problems for
benchmarking, 100 development problems with public ground truth, and 1,252 training problems
split evenly between bound estimation and relation prediction tasks. Each training problem includes
step-wise solutions, with up to four solutions per problem, and 76.8% (962 problems) are annotated
with relevant theorems. The dataset features 83 named theorems across 29 categories, with their
distribution illustrated in Figure 2. Test problem examples are provided in §A.3.

Statistic Number Bnd. Rel.
Theorem categories 29 - -
Named theorems 83 - -
Training problems (for training) 1252 626 626
- With theorem annotations 962 482 480
- With solution annotations 1252 626 626
- Avg. solutions per problem 1.05 1.06 1.05
- Max solutions per problem 4 4 4
Dev problems (for development) 100 50 50
Test problems (for benchmarking) 200 96 104

Table 1: Statistics of the IneqMath dataset.

13.3%
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7.2%

6.0%
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6.0
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Rearrangement Inequality4.8

Abstract Concreteness3.6
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Differential Calculus3.6
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Trigonometry2.4

Popoviciu's Inequality2.4

Others21.7

Figure 2: Distribution of theorem categories.

Comparison to existing datasets. As summarized in Table 2, IneqMath stands out for: (1)
providing expert-curated training and test sets, (2) offering rich annotations with step-wise solutions
and 83 grounded theorems, and (3) adopting an informal, accessible format for inequality proving
through bound estimation and relation prediction, evaluated via LLM-as-judge. This design bridges
the gap between formal proof systems and intuitive mathematical reasoning, making IneqMath a
unique resource for advancing LLM capabilities in problem solving and theorem proving.

Potential contamination statement. To ensure rigorous evaluation, the IneqMath test set was
commissioned from IMO-level medalists to feature novel problems, minimizing prior LLM pre-training
exposure. The poor performance across models (§5.2), particularly on overall accuracy (which demands
step-wise correctness), strongly suggests the benchmark poses a significant reasoning challenge,
regardless of potential familiarity with underlying mathematical concepts. We therefore believe the
IneqMath test set effectively probes novel problem-solving capabilities, and our conclusions on
current LLM limitations in rigorous inequality proving remain robust.

4 Fine-grained Informal Judges for Inequality Solving

The test split of the IneqMath dataset serves as our benchmark, comprising 200 Olympiad-level
inequality problems that challenge both humans and current LLMs. Traditional evaluation methods fall
short in this setting: expert annotation is accurate but prohibitively labor-intensive, while automated
techniques such as string matching or value equivalence fail to capture step-by-step correctness—an
essential aspect of inequality problem solving. To address this, we propose a fine-grained LLM-as-
judge framework, consisting of a final-answer judge for verifying the predicted answer (§4.1) and four
specialized step-wise judges targeting common reasoning flaws (§4.2). A solution is deemed correct
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Data Source Data Annotation Problem and Evaluation
Datasets Training Test / Dev #Theorem Solution Category Format Evaluation
INT [58] Synthesized Synthesized 35 ✓ Proof Formal Symbolic DSL
AIPS [57] Synthesized ✗ 8 ✓ Proof Formal Symbolic DSL
MO-INT [57] ✗ Data compilation ✗ ✗ Proof Formal Symbolic DSL
MINIF2F [74] ✗ Autoformalization ✗ ✗ Proof Formal
ProofNet [5] ✗ Autoformalization ✗ ✗ Proof Formal
FormalMATH [69] ✗ Autoformalization ✗ ✗ Proof Formal
leanWorkbook [68] Autoformalization Autoformalization ✗ ✗ Proof Formal
Proof or Bluff [45] ✗ Data compilation ✗ ✗ Proof Informal Human judge

CHAMP [35] ✗ Autoformalization ✗ ✗ Open Informal Human judge
Putnam Axiom [20] ✗ Data compilation ✗ ✗ Open Informal Answer checking
LiveMathBench [33] ✗ Data compilation ✗ ✗ Open Informal Answer checking

IneqMath (Ours) Expert annotated Expert annotated 83 ✓ MC, Open Informal LLM-as-judge

Table 2: Comparison of datasets for inequality and theorem proving. IneqMath provides expert-annotated
training and test/dev sets, featuring high-quality named theorems and step-wise solutions for model development.
Unlike prior datasets using synthesis or autoformalization, IneqMath presents problems in informal language
across multiple-choice (MC) and open-ended (Open) formats, and employs LLM-as-judge for evaluation.

overall only if it passes all five judges. As shown in Table 3, these judges achieve strong alignment
with human annotations (F1 = 0.93), providing a scalable yet reliable alternative to manual evaluation.

LLM-as-Judge Judge type Accuracy Precision Recall F1 score
Final Answer Judge Answer checking 1.00 1.00 1.00 1.00
Toy Case Judge Step soundness 0.91 0.86 0.97 0.91
Logical Gap Judge Step soundness 0.96 0.95 0.98 0.96
Numerical Approximation Judge Step soundness 0.96 0.95 0.98 0.96
Numerical Computation Judge Step soundness 0.71 0.68 0.98 0.80
Average - 0.91 0.89 0.98 0.93

Table 3: Performance metrics of LLM-as-judge framework on development set.

4.1 Final Answer Judge

LLM-generated solutions to IneqMath problems typically involve multiple reasoning steps followed
by a concluding answer statement. However, the final answer may vary in phrasing, structure, or
numeric format, especially for bound estimation problems. For example, C = 1√

2
and C =

√
2
2 are

mathematically equivalent but differ in form. Recent work [34] evaluates LLM outputs via format
normalization and exact string matching, without accounting for mathematical equivalence. To address
this, we propose a two-stage Final Answer Judge: it first identifies the concluding sentence with the
predicted answer, then performs robust equivalence checking to assess mathematical correctness,
even when the form differs from the reference. Prompt details and examples are in §B.1.

4.2 Four Step-wised Judges

Toy Case Judge. Inequality problems in IneqMath often require reasoning over continuous domains
(e.g., all a, b, c > 0), where specific numerical examples alone are insufficient for a valid proof. LLM
frequently generalize incorrectly from such examples—e.g., claiming an inequality holds universally
because it holds for a = 1, b = 2, c = 3. Prior work [14] flags these under a broad “logical flaw”
category, lacking granularity for targeted analysis. Our Toy Case Judge addresses this by detecting
unjustified generalization from toy examples. It prompts an LLM to flag conclusions based solely on
specific instances without broader justification. See §B.2 for prompts and examples.

Logical Gap Judge. IneqMath inequality problems often involve multi-step derivations (e.g.,
algebraic manipulation, constrained optimization, functional transformations) needing explicit
justification. LLMs, however, often skip key reasoning steps or assert conclusions without support
(e.g., stating an optimal bound without derivation). Existing step-level evaluations [62] assess validity
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Figure 4: Confusion matrices for five judges, which exhibit strong agreement with human labels.

and redundancy but lack granularity for such logical omissions. Our Logical Gap Judge addresses
this by flagging missing transitions, unjustified claims, and vague derivations, especially in steps
involving inequality transformations or bound estimation (see §B.3 for details).

Numerical Approximation Judge. Inequality problems in IneqMath often demand exact symbolic
reasoning, where the use of numeric approximations—e.g., replacing

√
2with 1.414—can compromise

mathematical rigor. However, many LLM-generated solutions resort to such approximations
during intermediate steps, leading to inaccurate or non-generalizable conclusions. To address
this, we introduce a Numerical Approximation Judge that flags inappropriate use of numeric
approximations—specifically when they affect derivations or final answers. Approximations used
solely for intuition or side remarks are allowed. See §B.4 for prompt details and examples.

Numerical Computation Judge. Many IneqMath problems require explicit numerical compu-
tations after variable assignment (e.g., evaluating 27

2 or summing rational terms). While symbolic
reasoning is vital, arithmetic accuracy is equally crucial for overall correctness. Prior work (e.g.,
EIC-Math [27]) categorizes broad error types but often overlooks subtle miscalculations in multi-step
derivations. Our Numerical Computation Judge addresses this by verifying arithmetic steps once
variables are instantiated. It prompts an LLM to extract numerical expressions, convert them into
Python code, and evaluate using floating-point arithmetic within a small tolerance. This enables
high-precision checking of both intermediate and final results. To further improve precision and
mitigate floating-point issues, we encourage using symbolic mathematics packages such as SymPy,
particularly for handling fractions and decimal numbers. Additional details are provided in §B.5.

4.3 Effectiveness Verification of Judges
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Figure 3: Confusion ma-
trix for the judge baseline.

A holistic LLM judge baseline. To motivate our specialized judging
system, we first evaluate a heuristic LLM-as-judge baseline. This prompts
a single, general-purpose LLM to holistically assess IneqMath solution
correctness, based on both final answer accuracy and step-wise soundness
across the four reasoning categories in §4.2. As shown in the confusion
matrix (Figure 3) using 80 human-annotated development examples, this
naive approach exhibits poor agreement with human labels, underscoring
its unreliability for rigorous evaluation in this domain.

Performance of our fine-grained judges. In contrast, our proposed suite of five specialized judges
exhibits strong alignment with human evaluations. Figure 4 presents the confusion matrices for each
judge on the same development set. The final answer judge (using GPT-4o-mini) achieves near-perfect
agreement, while the four step-wise judges (chosen for a balance of performance and cost as detailed
in §B.6) also demonstrate high fidelity. This confirms that decomposing the complex evaluation task
into targeted sub-problems allows LLMs to serve as reliable evaluators.

Qualitative analysis of judge disagreements. Despite the strong aggregate performance (overall
F1 = 0.93, Table 3), LLM-as-judge evaluations are not perfect. Acknowledging the skepticism
surrounding LLM-based evaluation, we conducted a qualitative analysis of failure cases where our
judges’ assessments diverged from human annotations. Detailed examples are provided in §B.7.
These instances underscore that while highly effective, our LLM judges can still struggle with the
deep, nuanced understanding that characterizes expert human mathematical reasoning.
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Step Acc (↑)
Overall Acc (↑) Answer Acc (↑) No Toy Case No Logic. Gap No Approx. Error No Cal. Error

Models All Bnd. Rel. All Bnd. Rel. All Bnd. Rel. All Bnd. Rel. All Bnd. Rel. All Bnd. Rel.
Heuristic Methods

Random Guess - - - 8.5 0.0 16.7 - - - - - - - - - - - -
Frequent Guess - - - 18.0 9.4 26.0 - - - - - - - - - - - -

Open-source Chat LLMs
Qwen2.5-Coder-32B [24] 1.5↓39.0 1.0↓50.0 1.9↓28.9 40.5 51.0 30.8 36.0 27.1 44.2 3.0 2.1 3.8 90.5 96.9 84.6 88.5 89.6 87.5
Llama-4-Scout [37] 1.5↓32.0 2.1↓44.8 1.0↓20.2 33.5 46.9 21.2 30.5 15.6 44.2 3.5 4.2 2.9 93.0 94.8 91.3 92.5 92.7 92.3
Qwen2.5-72B [47] 2.5↓39.5 3.1↓47.9 1.9↓31.8 42.0 51.0 33.7 54.5 53.1 55.8 5.0 4.2 5.8 91.0 94.8 87.5 95.0 94.8 95.2
Llama-4-Maverick [36] 2.5↓38.0 2.1↓43.7 2.9↓32.7 40.5 45.8 35.6 42.5 28.1 55.8 4.0 4.2 3.8 89.0 91.7 86.5 95.0 92.7 97.1
Qwen2.5-7B [48] 3.0↓32.0 2.1↓38.5 3.8↓26.0 35.0 40.6 29.8 44.5 32.3 55.8 4.5 3.1 5.8 92.5 96.9 88.5 93.0 92.7 93.3

Proprietary Chat LLMs
Gemini 2.0 Flash-Lite [17] 1.5↓31.5 2.1↓41.7 1.0↓22.1 33.0 43.8 23.1 11.5 11.5 11.5 3.5 3.1 3.8 73.0 77.1 69.2 90.5 87.5 93.3
GPT-4o mini [40] 2.0↓37.5 1.0↓41.7 2.9↓33.6 39.5 42.7 36.5 29.0 11.5 45.2 2.5 2.1 2.9 90.0 91.7 88.5 93.0 92.7 93.3
GPT-4.1 [42] 2.5↓38.0 0.0↓31.3 4.8↓44.2 40.5 31.3 49.0 16.0 12.0 19.0 10.0 8.3 11.5 59.5 66.7 52.9 93.5 92.7 94.2
GPT-4o [39] 3.0↓34.5 2.1↓38.5 3.8↓30.8 37.5 40.6 34.6 32.0 21.9 43.0 3.5 3.1 3.8 92.5 93.8 91.4 94.0 93.8 94.2
Gemini 2.0 Flash [16] 3.0↓46.0 3.1↓56.3 2.9↓36.5 49.0 59.4 39.4 15.5 13.5 17.3 13.5 7.3 19.2 55.5 60.4 51.0 94.5 94.8 94.2
Grok 3 [60] 3.5↓51.0 4.2↓62.5 2.9↓40.4 54.5 66.7 43.3 17.0 13.7 20.2 16.0 11.6 20.2 36.0 42.1 30.8 93.0 96.8 90.4

Open-source Reasoning LLMs
QwQ-32B [3] 2.0↓47.5 2.1↓52.1 1.9↓43.3 49.5 54.2 45.2 26.0 25.0 26.9 29.5 20.1 37.5 21.0 20.8 21.2 87.0 82.3 91.3
Deepseek-R1 (Llama-70B) [9] 3.5↓50.0 5.2↓53.1 1.9↓47.1 53.5 58.3 49.0 23.0 24.0 22.1 26.0 20.9 30.8 35.5 38.5 32.7 87.0 89.6 84.6
Deepseek-R1 (Qwen-14B) [10] 5.0↓35.5 6.3↓36.4 3.8↓34.7 40.5 42.7 38.5 21.0 18.8 23.1 21.0 19.8 22.1 35.5 38.5 32.7 85.0 91.7 78.8
Deepseek-R1 [11] 5.0↓44.5 4.2↓63.5 5.8↓26.9 49.5 67.7 32.7 57.0 53.1 60.9 17.5 6.3 27.9 81.0 95.8 67.3 95.0 99.0 91.3
Qwen3-235B-A22B [49] 6.0↓35.0 3.1↓32.3 8.7↓37.5 41.0 35.4 46.2 35.0 30.2 39.4 36.0 26.0 45.2 31.0 28.1 33.7 92.5 93.8 91.3

Proprietary Reasoning LLMs
Claude 3.7 Sonnet [4] 2.0↓40.0 2.1↓44.8 1.9↓35.6 42.0 46.9 37.5 49.0 36.5 60.6 4.0 3.1 4.8 93.5 95.8 91.3 93.0 90.6 95.2
Gemini 2.5 Flash [18] 4.5↓1.0 3.1↓1.1 5.8↓0.9 5.5 4.2 6.7 88.0 84.4 91.3 13.5 7.3 19.2 100.0 100.0 100.0 100.0 100.0 100.0
Grok 3 mini [61] 6.0↓65.5 4.2↓68.7 7.7↓62.5 71.5 72.9 70.2 24.0 16.7 30.8 19.5 11.5 26.9 53.5 63.5 44.2 91.0 94.8 87.5
Gemini 2.5 Pro [19] 6.0↓1.0 7.3↓1.0 4.8↓1.0 7.0 8.3 5.8 88.5 83.3 93.3 19.0 12.5 25.0 100.0 100.0 100.0 99.5 100.0 99.0
o1 [41] 8.0↓54.5 7.3↓55.2 8.7↓53.8 62.5 62.5 62.5 34.5 37.5 31.7 17.5 12.5 22.1 86.5 99.0 75.0 99.5 100.0 99.0
o3-mini [43] 9.5↓53.0 7.3↓62.5 11.5↓44.3 62.5 69.8 55.8 37.0 34.4 39.4 22.0 17.7 26.0 77.5 92.7 63.5 95.0 96.9 93.3
o4-mini [44] 15.5↓49.5 14.6↓48.9 16.3↓50.0 65.0 63.5 66.3 62.0 58.3 65.4 26.0 25.0 26.9 86.5 90.6 82.7 93.0 92.7 93.3
o3 [44] 21.0↓16.0 18.8↓11.4 23.1↓20.2 37.0 30.2 43.3 93.5 91.7 95.2 39.5 28.1 50.0 91.5 99.0 84.6 97.0 96.9 97.1
Average Accuracy (↑) 5.0↓38.0 4.5 ↓42.9 5.5↓33.5 43.0 47.4 39.0 40.3 34.8 45.5 15.0 11.0 18.7 73.1 77.9 68.8 93.2 93.7 92.8
Average Error Rate (↓) 95.0↑38.0 95.5 ↑42.9 94.5↑33.5 57.0 52.6 61.0 59.7 65.2 54.5 85.0 89.0 81.3 26.9 22.1 31.2 6.8 6.3 7.2

Table 4: Evaluation performance of chat and reasoning LLMs on the IneqMath benchmark (the test set). Bnd.
denotes bound problems and Rel. denotes relation ones. We report: (1) Overall Acc, which reflects the correctness
of both the final answer and intermediate steps; (2) Answer Acc, which measures final answer correctness alone;
and (3) Step Acc, which evaluates the accuracy of intermediate steps across four error categories—Toy Case,
Logical Gap, Numerical Approximation, and Numerical Calculation. Blue superscripts ↓ indicate accuracy drop
(Overall Acc - Answer Acc) from step-wise errors. Underlining denotes best result within each model category;
boldface highlights best overall performance. Default max token limit for reasoning LLMs is 10K.

5 Experiments in IneqMath

5.1 Experimental Setups

We conduct a systematic evaluation of 29 leading LLMs on the inequality problems in the IneqMath
test set. The evaluated models span two categories: general-purpose chat models (both open-source
and proprietary) and specialized reasoning LLMs designed for complex, multi-step problem-solving.
All models are prompted in a zero-shot setting with the problem statement and the instruction: “Please
solve the problem with clear, rigorous, and logically sound steps” to encourage detailed reasoning.
Model responses are assessed using our LLM-as-judge framework (§4). We report three key metrics:

• Answer Acc: Measures the predicted answer correctness, verified by the final-answer judge (§4.1).
• Step Acc: Aggregates the correctness of individual reasoning steps as determined by our four

specialized step-wise judges (§4.2), which target common flaws.
• Overall Acc: The primary metric, which deems a solution correct only if it achieves both a correct

final answer and flawless step-wise reasoning (i.e., passes all five judges).

A response is thus considered fully correct (Overall Acc) only if it produces the right final answer
through logically valid steps, passing scrutiny from all judges. Additional setup details are in §C.1.

5.2 Main Evaluation Results

Table 4 presents the performance of the evaluated LLMs on IneqMath. Our analysis reveals several
critical insights into current LLM capabilities for inequality proving:
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1) Reasoning LLMs achieve higher final-answer accuracy. Models like o1 (62.5% Answer Acc)
and Grok 3 mini (71.5% Answer Acc) significantly outperform their general-purpose chat counterparts
(e.g., GPT-4o at 37.5%, Grok 3 at 54.5%) in identifying the correct final answer. This suggests
specialized architectures or training for reasoning improve their search ability to find answers.

2) Step-wise scrutiny reveals a dramatic performance drop. The advantage in Answer Acc often
masks underlying reasoning flaws. Overall Acc plummets when steps are evaluated. For instance,
Grok 3 mini’s accuracy drops by 65.5% (from 71.5% Answer Acc to 6.0% Overall Acc), and o3-mini
by 53.0%. This stark discrepancy underscores the fragility of LLM-generated deductive chains.

3) Robust proof construction remains a major challenge. Even top models like o1 achieve low
Overall Acc (8.0%). Many large models, despite moderate Answer Acc, also score poorly (e.g., Grok
3 at 3.5% Overall Acc). This indicates a fundamental gap between finding a plausible answer and
constructing a mathematically rigorous, step-by-step derivation.

5.3 In-depth Study

Failure solution analysis. As shown in Table 4, where we report average error rates for overall
accuracy, final-answer accuracy, and step-wise accuracy across four categories, the most common
step-wise errors in LLM-generated solutions are logical gaps (85.0% average failure rate across
models) and improper generalization from toy cases (59.7%). Less frequent, but still significant, are
errors from numerical approximations (26.9%) and miscalculations (6.8%). A detailed examination
of incorrect solutions (see examples in §C.2.1-§C.2.4) highlights these prevalent error patterns, which
often undermine proofs even when LLMs produce the correct final answer. Beyond these step-wise
errors, LLMs also struggle to derive correct final answers for complex problems (§C.2.5), indicating
deeper challenges in theorem application and symbolic manipulation.
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Figure 5: Model-size scaling law (Answer Acc).
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Figure 6: Model-size scaling law (Overall Acc).

Scaling law in model size. Figure 5 shows how final-answer accuracy (which evaluates only the
correctness of the final predicted answer) scales with model size for LLMs. As model size increases,
we observe a steady improvement in answer accuracy, reflecting an empirical scaling law that larger
models are better at inferring correct bounds and inequality relationships. However, this trend does
not hold well when considering overall accuracy—which requires both a correct answer and valid
intermediate reasoning steps—as shown in Figure 6. In this latter case, the scaling curve flattens,
indicating that increased model size alone is insufficient to eliminate step-by-step reasoning errors.
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Figure 7: Scaling law in test-time
computation for reasoning LLMs.

Scaling law in test-time computation. Extended test-time
computation, allowing longer reasoning chains, is a common
strategy for complex problem-solving [11]. We investigated
its impact on overall accuracy in IneqMath by varying the
maximum completion tokens for reasoning LLMs. Figure 7
shows that while models like Gemini 2.5 Pro and o3 initially
improve with more tokens, performance gains saturate (e.g.,
beyond 20K tokens). This indicates that merely increasing
computational budget offers diminishing returns for achieving
rigorous, step-wise correct proofs, highlighting the need for more
than just longer thought processes.
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5.4 Exploring Improvement Strategies
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Figure 8: Model performance with
retrieved theorems as hints.

Retrieving relevant theorems as hints. To assess theorem-
based hints, we provide models with the top-k most frequent
theorems from our IneqMath training corpus when solving
a 40-problem test subset. As shown in Figure 8, providing
one or two such theorems decreases overall accuracy for
weaker models (e.g., Grok 3 mini, o3-mini, o4-mini), likely
due to misapplication or distraction by potentially irrelevant
information. Conversely, stronger models like Gemini 2.5
Pro benefit from these hints, suggesting advanced reasoning
is crucial to effectively use such guidance. These results
underscore the potential of theorem-guided reasoning but
also highlight the critical need for more sophisticated theorem
retrieval mechanisms (e.g., RAG [25, 21]) to reliably enhance
LLM performance in inequality proving. Detailed experiments are available in §C.4.
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Figure 9: Model performance via
self-critic as feedback.

Self-improvement via critic as feedback. Allowing an LLM to
critique and revise its own reasoning has been shown to improve
performance on complex tasks [70, 52]. To explore whether this
holds for inequality proving, we drew 40 random test problems
from IneqMath and ran one round of self-critique. As Figure 9
shows, self-critique consistently improves performance—e.g.,
Gemini 2.5 Pro’s overall accuracy rises from 43% to 48%. This
upward trend underscores self-critique as a promising, supervision-
free method to enhance logical rigor and solution quality of LLMs
in inequality reasoning. More details are in §C.5.

6 Related Work

Datasets for inequality and theorem proving. One of major bottlenecks in advancing LLM
capabilities for inequality proving is the scarcity of suitable datasets. Existing resources fall short in
several ways: general ATP collections like MiniF2F [74] and ProofNet [5] contain few inequalities;
synthetic datasets such as INT [58] and AIPS [57] offer scale but often lack structural diversity due
to their template-based generation; and curated collections like ChenNEQ [6] are often too small
for extensive training. More fundamentally, most existing datasets [72, 54, 65, 26, 53, 23] adopt
a fully formal representation, where problems and proofs are encoded in systems like Lean [8] or
Isabelle [38]. While formal mathematical reasoning offers correctness guarantees and is a vital
research direction, LLMs, trained on vast corpora of natural language, often exhibit strong informal
reasoning capabilities. Therefore, our IneqMath adopts an informal perspective, reformulating
inequality proof problems into two verifiable subtasks—bound estimation and relation prediction.
These problems within IneqMath were crafted and reviewed by IMO-level medalist experts. Other
informal reasoning datasets [45, 35, 20, 33] typically lack annotated solutions, theorem references, or
corresponding training data. To address these gaps, IneqMath introduces 1,252 inequality problems
for training, each annotated with theorems (from a set of 83 named theorems spanning 29 categories)
relevant to its solution, which comprises up to four steps.

Methods for inequality and theorem proving. Proving inequalities is a complex endeavor,
demanding intuition for discovering tight bounds, strategic insight for selecting and applying classical
theorems, and precise symbolic transformations. Traditional automated theorem provers (ATPs)
primarily operate within formal systems like Lean [8] or Isabelle [38], requiring problems and proofs
to be encoded in specialized languages. Inspired by the mathematical reasoning capabilities of
LLMs [73], a significant body of recent work has focused on integrating LLMs with these formal
ATPs. These approaches often model theorem proving as a Markov Decision Process (MDP),
training LLMs to select appropriate tactics and premises to construct proofs verifiable by the formal
system [13, 15, 23, 31, 46, 67, 63, 29, 30, 71, 12, 55, 50, 56]. For instance, systems like Goedel-
Prover [32] leverage large Lean corpora to train models for tactic prediction, enabling end-to-end
formal proof generation. Other methods incorporate tree-search techniques to navigate the vast search
space of premises within these formal frameworks [59, 28, 64].
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However, LLMs are fundamentally trained on vast corpora of natural language, suggesting their
inherent strengths may lie in informal reasoning, which is often closer to human intuition and the
preliminary stages of mathematical discovery. This highlights a gap and an opportunity for methods
that leverage these informal capabilities. Our work diverges from the purely formal paradigm by
proposing an informal yet verifiable approach to inequality proving, aiming to benchmark and enhance
LLM performance in a setting that better aligns with their human-like problem-solving, while also
exploring potential improvement strategies like theorem-guided reasoning and self-refinement.

LLM-as-judge for math problem solving. Reliable evaluation of mathematical problem-solving
necessitates assessing not only final answer correctness but also the logical soundness of each
reasoning step, a significant challenge for automated systems. Traditional methods are often
inadequate: expert annotation is labor-intensive and unscalable for large-scale evaluation [45, 35],
while automated techniques such as string matching or value equivalence overlook crucial step-by-step
proof correctness [22, 20, 33, 34]. While LLMs show promise as evaluators (LLM-as-judge),
their capacity for detailed, step-wise mathematical judgment is still developing. Existing step-level
LLM judges [62, 14], for instance, may assess general step validity but often lack the granularity
to identify specific, nuanced reasoning flaws. Similarly, frameworks like EIC-Math [27] provide
broad error categories but can miss subtle yet critical issues in multi-step derivations, such as minor
miscalculations or unstated assumptions. To address these limitations and rigorously assess informal
mathematical proofs like inequality solving, our LLM-as-judge framework combines a high-precision
final-answer judge with four step-wise judges targeting common errors: toy case overgeneralization,
logical gaps, unjustified numeric approximations, and numeric calculation mistakes.

7 Conclusion

In summary, we introduce an informal yet verifiable task formulation for inequality proving,
decomposing it into bound estimation and relation prediction. Building on this, we release IneqMath,
an expert-curated benchmark of Olympiad-level inequalities with a training corpus featuring step-wise
solutions and theorem annotations. Our novel LLM-as-judge evaluation framework, comprising a
final-answer judge and four step-wise judges, enables a rigorous assessment. Our comprehensive
evaluation of diverse leading LLMs reveals a critical gap: while LLMs may achieve high final-answer
accuracy, this often plummets by up to 65.5% under step-wise scrutiny, with top models like o1
achieving less than 10% overall accuracy. This discrepancy exposes fragile deductive chains for
current LLMs in constructing rigorous proofs. We further find that scaling model size or increasing
test-time computation yields limited gains in overall proof correctness. Instead, our findings highlight
promising research directions such as theorem-guided reasoning and self-refinement.
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A Dataset Curation Details

A.1 Data Annotation Tool

Figure 10: The interface of our developed tool for checking and editing the bound problems.

Figure 11: The interface of our developed tool for checking and editing the relation problems.
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A.2 Prompts for Rephrasing Problems

Prompt for Rephrasing Proofs to Bound Problems

Task: Transform the given inequality problem into a bound prediction problem by introducing a constant C
and determining its optimal value.

Instructions:
1. Analyze the original problem, focusing on its structure and potential for transformation.
2. Introduce a constant C by either replacing an existing constant or creating a new relationship between
expressions.
3. Determine whether to find the minimal or maximal value of C that satisfies the inequality for all relevant
variables.
4. Consider factors such as homogeneity, existing constraints, and the domain of variables (e.g., positive
reals, all reals).
5. Ensure the rephrased problem maintains the mathematical essence and constraints of the original.

Output format:
Provide your response in the following structure:
<Analysis>: Concise explanation of key features and transformation approach.
<Conclusion>: YES or NO, followed by a brief summary of the transformation.
<Rephrased Problem>: Transformed problem statement, focusing on finding the optimal C.
<Answer>: C =< value >.

Key considerations:
1. For double inequalities, attempt to rephrase as a single bound prediction problem when possible.
2. In homogeneous inequalities, focus on the ratios between variables rather than their absolute values.
3. Incorporate any existing constraints into the rephrased version of the problem.
4. Clearly specify the domain of the variables in the rephrased problem statement.
5. Ensure that the rephrased problem is logically equivalent to the original.

Example:
Original problem: Let a, b, c ∈ R+. Prove the inequality

abc

(1 + a)(a+ b)(b+ c)(c+ 16)
≤ 1

81

<Analysis>: To turn this into a bound prediction problem, we can focus on the following steps:
1. The left side is a rational expression that is always positive for a, b, c ∈ R+.
2. The right side is a fixed constant 1

81
.

3. We replace the constant 1
81

with a variable C and ask: What is the smallest C such that the inequality
holds for all positive a, b, c?
4. This approach allows us to determine the tightest possible upper bound for the left-hand expression.
5. If we find the smallest C that works, we prove the original inequality and show it’s the best possible.

<Conclusion>: YES, the inequality can be rephrased as a bound prediction problem. By replacing the
constant 1

81
with a variable C, we can determine the tightest upper bound for the given rational expression,

effectively proving the original inequality and demonstrating its optimality.

<Rephrased problem>:
Coll Determine the minimal constant C such that the following inequality holds for all a, b, c:

abc

(1 + a)(a+ b)(b+ c)(c+ 16)
≤ C.

<Answer>: C = 1
81

.

Now, please rewrite the following problem:
Original problem: {problem}
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Prompt for Rephrasing Proofs to Relation Problems

Task: Transform the given inequality proof problem into a relation prediction problem.

Instructions:
1. Analyze the original problem, identifying key components such as variables, domains, conditions, and
the main inequality.
2. Rephrase the problem by maintaining the original expressions and replacing the relation symbol with a
blank to be filled.
3. Preserve any additional conditions or constraints from the original problem in your rephrased version.
4. Change the task from “Prove” to “Determine the correct inequality relation to fill in the blank.”
5. Provide a set of options for the relation, always including ≤, ≥, =, <, >, and “None of the above”.
6. Determine the correct answer based on your modification and analysis.

Output format:
Provide your response in the following structure:

<Analysis>: Detailed step-by-step analysis of the original problem and your approach to rephrasing it.

<Conclusion>: YES or NO, followed by a brief explanation of whether and how the problem can be
effectively rephrased.

<Rephrased Problem>:
Transformed problem statement.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

<Answer>: Option letter.

Key considerations:
1. Maintain the original mathematical expressions and any given conditions as much as possible.
2. Ensure the rephrased problem captures the essence and complexity of the original problem.
3. For problems with multiple inequalities, focus on one main inequality for the relation prediction task.
4. When dealing with complex fractions or expressions, keep them intact to maintain the problem’s
difficulty level.
5. If the relation depends on specific values of the variables or cannot be definitively determined, consider
using “None of the above” as the correct answer.

Example:
Original problem: Let a, b, c ∈ R+. Prove the inequality

abc

(1 + a)(a+ b)(b+ c)(c+ 16)
≤ 1

81

<Analysis>: To rephrase it to a relation prediction problem, we can focus on the following steps:

1. The original problem is a proof task for an inequality involving positive real numbers a, b, and c.
2. The left side of the inequality is a complex fraction abc

(1+a)(a+b)(b+c)(c+16)
.

3. The right side is a constant fraction 1
81

.
4. The original inequality uses the “less than or equal to” (≤) relation, which needs to hold for all positive
real values of a, b, and c.
5. We can transform the proof task into determining the correct relation between the left and right sides of
the inequality.

<Conclusion>: YES, the inequality can be effectively rephrased as a relation prediction problem.

<Rephrased problem>:
Let a, b, c ∈ R+. Consider the following inequality:

abc

(1 + a)(a+ b)(b+ c)(c+ 16)
( )

1

81
.

Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

<Answer>: A

Now, please rewrite the following problem:
Original problem: {problem}
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A.3 Benchmark Examples

IneqMath Testing Example 1: Bound Problem

Question: Let x, y, z > 0 such that x+ y+ z = 1. Determine the minimal constant C such that
the following inequality holds for all x, y, z:

xy(y + 4z) + yz(z + 4x) + zx(x+ 4y) ≤ C.

IneqMath Testing Example 2: Bound Problem

Question: Let a1, a2, . . . , an be real numbers and S be a non-empty subset of {1, 2, . . . , n}.
Find the largest constant C such that the following inequality holds for all a1, a2, . . . , an and S:

2C

(∑
i∈S

ai

)2

≤
∑

1≤i≤j≤n

(ai + · · ·+ aj)
2
.

IneqMath Testing Example 3: Bound Problem

Question: Let a1, a2, . . . , an > 0 such that a1 + a2 + . . .+ an < 1. Determine the minimal
constant C such that the following inequality holds for all a1, a2, . . . , an:

a1 · a2 . . . an (1− a1 − a2 − . . .− an)

(a1 + a2 + . . .+ an) (1− a1) (1− a2) . . . (1− an)
≤ C

3

nn−1
.
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IneqMath Testing Example 4: Relation Problem

Question: Let a, b, c, x, y, z ∈ R be real numbers such that a+ b+ c = 1 and x2 + y2 + z2 = 1.
Consider the following expression:

a(x+ b) + b(y + c) + c(z + a) ( ) 1.

Determine the correct inequality relation to fill in the blank.

Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

IneqMath Testing Example 5: Relation Problem

Question: In the plane of the acute-angled triangle △ABC, let L be a line such that u, v, w
are the lengths of the perpendiculars from A,B,C respectively to L. Consider the following
inequality:

u2 tanA+ v2 tanB + w2 tanC ( ) ∆.

where ∆ is the area of the triangle. Determine the correct inequality relation to fill in the blank.

Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

IneqMath Testing Example 6: Relation Problem

Question: Let a, b, c be the sides of any triangle. Consider the following inequality:

3

(∑
cyc

ab (1 + 2 cos(c))

)
( ) 2

(∑
cyc

√
(c2 + ab(1 + 2 cos(c))) (b2 + ac(1 + cos(b)))

)
.

Determine the correct inequality relation to fill in the blank.

Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above
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B Fine-grained Informal Judge Details

B.1 Final Answer Judge

Prompt for Final Answer Judge: Answer Extraction for Bound problems

You are an expert at extracting numbers from answer sentences. Below are examples of sentences and the
corresponding numbers:

Example 1: answer is C = 2.
Answer: C = 2

Example 2: answer is C = 1√
2
.

Answer: C = 1√
2

Example 3: answer is C = 2 .
Answer: C = 2

Now, extract the number from the following sentence: {answer_sentence}.

Make sure to return the answer in a format as “C=<extracted_answer>”, where <extracted_answer>
is the extracted number or expression.

Prompt for Final Answer Judge: Answer Extraction for Relation Problems

You are an expert at extracting option letters (A, B, C, D, E, F) from answer sentences.

The options are given below:
A: (A) ≤
B: (B) ≥
C: (C) =
D: (D) <
E: (E) >
F: (F) None of the above

Below are examples of sentences and the corresponding option letters:

Example 1: answer is (B) ≥.
Answer: B

Example 2: answer is (E) >.
Answer: E

Example 3: answer is: ≤ .
Answer: A

Now, extract the option letter from the following sentence: {answer_sentence}.

Make sure to return the option letter only, without any other characters.
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Prompt for Final Answer Judge: Answer Equivalence Verification

You are an expert at verifying mathematical expression equivalence. Analyze if two expressions are exactly
equivalent by following these strict rules:

Required Analysis Steps:
1. Check if both expressions are valid mathematical forms.
2. If either expression is not mathematical (e.g., text or undefined), return False.
3. For numerical expressions:

- Direct equality (e.g., 2 = 2) → True.
- Different representations of same value (e.g., 1/2 = 0.5,

√
4 = 2) → True.

- Decimal approximations vs exact values (e.g., 2π ̸= 6.28318) → False.
4. For algebraic expressions:

- Must have clear, valid transformation path between forms.
- If transformation requires multiple non-obvious steps → False.
- Verify equivalence through algebraic proof when possible.
- For complex expressions, use techniques like squaring or substitution to verify.

Equivalence Criteria:
- Must have exactly same deterministic value.
- Must be provably equivalent through valid mathematical operations.
- Different notations of same exact value are equivalent.
- Decimal approximations are NOT equivalent to exact expressions.
- No rounding or approximations allowed.
- If equivalence cannot be conclusively proven → False.

Example pairs and their analysis:
Ground truth: C = 2
Prediction: C = 2
Analysis: The expressions are identical in both form and value, representing the same integer 2.
Equivalent: True

Ground truth: C = 1.5
Prediction: C = 3

2

Analysis: The decimal 1.5 and fraction 3
2

are different representations of the same number (1.5 = 3
2
).

Equivalent: True

Ground truth: C = 2π
Prediction: C = 6.28318530718
Analysis: While 6.28318530718 is a decimal approximation of 2π, they are not symbolically equivalent
expressions.
Equivalent: False

Ground truth: C =
√

1
6

Prediction: C = 1√
6

Analysis: These are equivalent through the property
√

a
b
=

√
a√
b

when a, b > 0.
Equivalent: True

Ground truth: C =
√

3
2

Prediction: C = 3

2
√
2

Analysis: The expressions differ as proven when squared: (
√

3
2
)2 = 3

2
̸= 9

8
= ( 3

2
√
2
)2.

Equivalent: False

Now analyze these expressions:
Ground truth: {ground_truth}
Prediction: {prediction}
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B.2 Toy Case Judge

Prompt for Toy Case Judge

Task: Evaluate the logical rigor of a solution to an inequality problem, focusing specifically on whether the
direction of the inequality was justified using toy cases or special value substitution.

Instructions:
1. Carefully read the reasoning process used to solve the inequality.
2. Identify whether the direction of the inequality was determined by testing special values, trying toy cases,
or relying on extreme-case analysis, rather than providing a general proof valid over the entire domain.
3. If the model uses a toy case (e.g., setting a variable to 0, 1, or choosing symmetric/equal values) or
considers a variable tending to 0 or ∞ (extreme-case reasoning) to conclude the inequality direction, this
should be flagged as logically unsound unless it is later supported by a rigorous or general argument.
4. Substituting special values for the purpose of verifying equality or testing sharpness is acceptable and
should not be flagged.
5. If a toy case is used to show that the inequality does not hold (i.e., the two sides are incomparable), this
is acceptable and should not be flagged.
6. Trying toy cases or substituting special values for the purpose of exploring or analyzing the prob-
lem—without using them to directly conclude the inequality direction—is acceptable and should not be
flagged.
7. The goal is to confirm whether the final conclusion is justified for all variables in the given domain by
using sound and formal reasoning.

Output Format:
<Analysis>: Brief explanation of whether toy cases, special values, or extreme-case reasoning were used
to justify inequality direction, and whether this undermines the rigor of the proof.
<Flagged Reasoning Step (if applicable)>: Quote or summarize the step(s) where toy cases or
extreme cases were used to justify the inequality.
<Answer>: True or False. It indicates whether the solution’s reasoning is logically valid (True) or
contains flaws due to unjustified use of toy cases, special value substitution, or extreme-case reasoning
(False).

Key Considerations:
1. Check which steps are used to justify the final general conclusion.
2. Toy case examples (e.g., setting , or choosing values like) should not be used to conclude general
inequality directions.
3. These techniques are allowed for illustration or equality testing, but not as a replacement for a full
justification.
4. Extreme-case analysis (e.g., letting or) used as a substitute for proof to justify the final general conclusion
should be flagged.
5. Do not provide improvement suggestions—simply judge whether the logic used is valid or flawed.
6. Only reasoning steps that fail to generalize and is used to justify the final general conclusion should be
flagged.

Examples of inputs and outputs:
{examples}

Now analyze the following problem and solution:
Original Problem: {query}
Solution: {response}
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Judge Example 1: Toy Case

Response:
Let’s test the specific values.
Case 1: If a = b = c, then:(

a

b+ c

)2

+
b

c+ a
+

(
c

a+ b

)2

=
1

4
+

1

2
+

1

4
= 1.

Case 2: If a = 0 and b = c = 1, then:(
a

b+ c

)2

+
b

c+ a
+

(
c

a+ b

)2

= 0 + 1 + 1 = 2.

From the test cases, we can conclude that the minimum value of the expression was 1. Therefore,
the expression is always at least 1. The answer is C = 1 .

Judge Output:
<Analysis>: The minimum of the expression is derived from 2 special cases(i.e. a = b = c
and a = 0, b = c = 1). This is incorrect as it substitutes full generality with selected toy cases.

<Flagged Reasoning Step (if applicable)>: From the test cases, we can conclude that
the minimum value of the expression was 1. Therefore, the expression is always at least 1.

<Answer>: False

B.3 Logical Gap Judge

Prompt for Logical Gap Judge

Task: Evaluate the logical rigor of a proposed solution to a mathematical inequality problem. Focus on
whether the reasoning includes non-trivial claims made without justification, logical leaps, or unsupported
assertions, while allowing for valid optimization-based, algebraic, or analytic analysis when properly
demonstrated. This prompt does not evaluate whether the direction of an inequality was justified using toy
cases, special values, or asymptotic behavior. That aspect is handled separately.

Instructions:
1. Carefully read the entire reasoning process used to solve the inequality.
2. Identify whether the solution includes:

- Any non-obvious (non-trivial) claims or transformations stated without justification or explanation.
- Any logical gaps or skipped steps that lead to intermediate or final conclusions.

3. All significant transformations—especially involving inequalities, bounds, or extremal behavior—must
be supported by: Algebraic manipulation, Well-known identities or theorems, Valid analytical tools (e.g.,
convexity, derivatives, limits) or step-by-step numeric or symbolic reasoning.
4. Optimization methods (e.g., Lagrange multipliers, derivative-based analysis) are valid only if the analysis
is explicitly shown:

- If a solution invokes optimization or analytical techniques, it must demonstrate key steps, derivative
conditions, or critical point verification.

- Statements such as “solving the constrained optimization problem confirms...” without any derivation
or argument are considered unjustified.

- You do not need to assess whether toy cases, special values, or extreme behavior were used to infer the
inequality direction. That responsibility lies outside the scope of this Judge.
5. Simple algebra or widely known transformations (e.g., AM-GM, factoring identities) may be used
without full derivation.
6. The goal is to assess whether each important conclusion within the reasoning—not just the final
answer—is logically supported and rigorously justified.
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Prompt for Logical Gap Judge (Continued)

Output Format:
<Analysis>: Step-by-step explanation of whether the reasoning is logically sound. Highlight any
unjustified claims or skipped steps, unless they are supported by valid asymptotic, numeric, or analytic
reasoning.
<Flagged Reasoning Step (if applicable)>: Quote or summarize the specific step(s) where an
unjustified claim or logical leap occurred.
<Answer>: True or False. True if the reasoning is valid; False if it contains unjustified steps or
unsupported claims.

Key Considerations:
1. Focus on whether each major step (not just the final answer) is logically justified.
2. Non-trivial algebraic identities or inequality steps must be explained unless they are well-known.
3. Minor simplifications and standard techniques are acceptable without proof.
4. Do not flag steps involving toy cases, extreme values, or special substitutions used to infer inequality
direction—those are out of scope here.
5. Claims like “a numerical check shows” must include specific values, results, or graphs to be valid.
6. Optimization-based arguments (e.g., Lagrange multipliers, critical point methods) must include
demonstrated steps or analytic structure. If only the method is named but not applied, the reasoning should
be flagged.
7. Do not flag steps used solely for equality verification, sharpness testing, or illustration.
8. Do not provide improvement suggestions—simply judge whether the logic is valid or flawed as presented.

Examples of inputs and outputs:
{examples}

Now analyze the following problem and solution:
Original Problem: {query}
Solution: {response}

Judge Example 2: Logical Gap

Response:
...
A numerical check confirms that the minimum occurs when x = 1, and the expression equals 4.
So the largest constant C such that the inequality holds for all positive a, b, c is:

C = 4

Judge Output:
<Analysis>: The statement “A numerical check confirms that the minimum occurs when
x = 1” is made without showing any actual numerical data, evaluations, or visual/analytic
evidence to support this claim.

<Flagged Reasoning Step (if applicable)>: A numerical check confirms that the
minimum occurs when x = 1.

<Answer>: False
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B.4 Numerical Approximation Judge

Prompt for Numerical Approximation Judge

Task: Evaluate the logical rigor of a solution to an inequality problem, specifically checking whether approx-
imate numerical substitutions (e.g., replacing

√
2with 1.414) were improperly used in the reasoning process.

Instructions:
1. Carefully read the entire reasoning process used to solve the inequality.
2. Identify whether the solution includes:

- Any replacement of exact expressions (such as radicals, fractions, or constants like π) with approximate
decimal values.
3.Strict rules for use of approximate values:

- If approximated values are directly involved in any operations (such as addition, subtraction, multipli-
cation, or division), it must immediately be considered invalid, regardless of whether the operation is for
comparing sizes or for further reasoning!

- Examples of invalid actions: Approximating
√
5 ≈ 2.236 and then using it to compute

√
5 + 3

approximately, or Approximating π ≈ 3.14 and then evaluating π/2 based on 3.14.
4. Approximate substitutions are allowed only under the following conditions: If approximate numerical
comparison is used between simple numbers (e.g.,

√
4, 1

2
,
√
2) that humans can readily estimate, it is

acceptable.
5. Approximate substitution is invalid and must be flagged in these cases:

- If an approximate value is introduced for a complex irrational number (e.g.,
√
17,

√
23) where human

mental estimation is impractical, even for comparison purposes.
- If any approximation alters the rigor of the argument.

6. You do not need to judge whether the final inequality direction is correct—only whether improper
approximation substitution occurred.

Output Format:
<Analysis>: Step-by-step explanation of whether approximate numerical values were improperly
substituted for exact expressions. Clarify whether approximations were used only illustratively or
improperly incorporated into reasoning.
<Flagged Reasoning Step (if applicable)>: Quote or summarize the specific step(s) where
inappropriate approximations were made.
<Answer>: True or False. True if the reasoning maintains acceptable rigor regarding approximations;
False if it violates the rules.

Key Considerations:
1. If approximated values are directly involved in any operations (such as addition, subtraction,
multiplication, or division), it must immediately be considered invalid, regardless of whether the operation
is for comparing sizes or for further reasoning.
2. Comparing simple, common values via approximation (e.g.,

√
2 ≈ 1.414 vs 1.5) is acceptable if human

estimation is reasonable.
3. Approximate values of complicated irrational numbers (e.g.,

√
17,

√
23, π5/4) are invalid even for

comparison.
4. Any use of approximate values for calculations (such as adding, subtracting, multiplying, or dividing
approximate numbers) is strictly invalid, even if the final result seems close. Only comparing two simple
exact numbers by approximation is acceptable; calculating further with approximated values is never
allowed.
5. Widely known exact simplifications (e.g.,

√
4 = 2, 1

2
= 0.5) are acceptable.

6. Do not suggest improvements—only judge whether the solution follows the rules.

Examples of inputs and outputs:
{examples}

Now analyze the following problem and solution:
Original Problem: {query}
Solution: {response}
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Judge Example 3: Numerical Approximation

Response:
...
When A = 89◦, B = C = 45.5◦:

cos 89◦ ≈ 0.01745

cos 45.5◦ ≈ 0.7009

Compute:
cosA

cosB cosC
=

0.01745

0.70092
≈ 0.01745

0.4913
≈ 0.0355

cosB

cosC cosA
=

0.7009

0.7009 · 0.01745
=

0.7009

0.01223
≈ 57.33

cosC

cosA cosB
=

0.7009

0.01745 · 0.7009
=

0.7009

0.01223
≈ 57.33

So the sum:
S ≈ 0.0355 + 57.33 + 57.33 ≈ 114.7 > 114

which concludes that S > 114.
...

Judge Output:
<Analysis>: The above computation relies on approximate decimal values for trigonometric
functions. Using such coarse approximations—especially in the denominator—can lead to
significant magnification of numerical error. So comparing the approximation of S with 114 to
conclude the relationship with S and 114 is not mathematically rigorous.

<Flagged Reasoning Step (if applicable)>: So the sum S ≈ 0.0355 + 57.33 +
57.33 ≈ 114.7 > 114, which concludes that S > 114.

<Answer>: False

B.5 Numerical Computation Judge

Prompt for Numerical Computation Judge

Task: Evaluate the correctness of numerical computations in a solution to a mathematical inequality prob-
lem. Focus on verifying whether each calculation step is numerically valid, allowing for some error tolerance.

Instructions:
1. Carefully read through the entire solution.
2. Identify all numerically verifiable expressions, including:

- Exact value computations when variables are assigned specific numbers, allowing for floating-point
operations.
3. Do not extract:

- Symbolic manipulations or transformations.
- Expressions involving symbolic variables or operations.
- Inequalities; only extract equations.
- Approximate equations (e.g., using “approximately equal to”).

4. Python validation rules:
- Convert all operations to floating-point calculations.
- Allow a small tolerance for numerical comparisons (e.g., “abs(lhs - rhs) < 1e-2”).
- Set the final result of each check to a variable “answer”, where “answer = True” if the verification

succeeds, otherwise False.
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Prompt for Numerical Computation Judge (Continued)

5. Final output format:
- Extracted expressions: List all selected expressions in natural math form.
- Analysis: Clearly state why every expression meets the criteria for verification or doesn’t.
- Validation Codes: Provide Python code snippets to verify each expression.

Output Format:
<Analysis>: Reason why the expression needs to be verified and extracted or not.
<Expressions>: List(Expression 1, Expression 2, ...)
<Codes>:

# Validation for Expression 1
import sympy as sp
# your checking code here

# Validation for Expression 2
import sympy as sp
# your checking code here

Key Considerations:
- Only extract expressions involving explicit numerical computations.
- All selected expressions must be verifiable numerically, allowing for some error tolerance.
- Use floating-point operations for all checks.
- Do not extract approximate equations.
- Do not extract expressions involving symbolic manipulations or transformations.

Examples:
{examples}

Now analyze the following problem and solution:
Original problem: {query}
Solution: {response}

Judge Example 4: Numerical Computation

Response:
...
Based on the previous steps,

φ(t) = t+
27

t3
+

2

3
,

φ′(t) = 1− 81

t4
,

So φ′(t) ≥ 0 for t ≥ 3 with equality only at t = 3. Hence φ is increasing on [3,∞) and attains
its minimum at t = 3:

φ(3) = 3 +
27

27
+

2

3
= 4.

Therefore F (a, b, c) ≥ 4 for every positive a, b, c, and equality occurs when t = 3.
...

<Analysis>: φ(3) = 3 + 27
27 + 2

3 = 4 is the only numerical expression without any variables.
So this is the only expression that should be extracted.

<Expressions>: List(φ(3) = 3 + 27
27 + 2

3 = 4)

<Codes>:

# Validation for Expression 1: φ(3) = 3 + 27/27 = 4
from sympy import Rational
phi_val = Rational(3) + Rational(27, 27)
answer = (phi_val == 4)
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B.6 Development Performance of Judges

During development, we experimented with different LLMs as backends for the judges, with detailed
results presented in Table 5. Balancing F1 score, inference cost, and latency, we select GPT-4o mini
for the final-answer judge due to its perfect F1 score (1.0) and the lowest cost among candidates.
For the four step-wise judges, we use o4-mini for Toy Case Judge and Logical Gap Judge, o1 for
Numerical Approximation Judge, and GPT-4.1 mini for Numerical Calculation Judge, which attains
F1 scores above 0.9 on average.

Metrics GPT-4o mini GPT-4o GPT-4.1 mini GPT-4.1 o3-mini o4-mini o1 o3

Final Answer Judge

Accuracy (%) 100.0 - - - - 100.0 - -
Precision (%) 100.0 - - - - 100.0 - -
Recall (%) 100.0 - - - - 100.0 - -
F1 score 1.0 - - - - 1.0 - -

Toy Case Judge

Accuracy (%) 80.0 86.3 88.8 90.0 91.3 91.3 80.0 91.3
Precision (%) 89.3 84.6 82.2 87.5 87.8 86.0 71.2 90.0
Recall (%) 65.8 86.8 97.4 92.1 94.7 97.4 97.4 92.1
F1 score 0.76 0.86 0.89 0.90 0.91 0.91 0.82 0.91

Logical Gap Judge

Accuracy (%) 64.6 71.3 78.8 75.0 80.0 96.3 72.2 90.8
Precision (%) 82.4 63.5 71.0 67.9 75.0 95.1 64.4 97.0
Recall (%) 35.9 100.0 97.5 95.0 90.0 97.5 97.4 84.2
F1 score 0.50 0.78 0.82 0.79 0.82 0.96 0.78 0.90

Numerical Approximation Judge

Accuracy (%) 80.0 71.3 60.0 87.5 72.5 87.5 96.3 96.3
Precision (%) 82.1 63.9 56.2 80.4 65.1 83.0 95.2 95.2
Recall (%) 78.0 97.5 100.0 100.0 100.0 95.1 97.6 97.6
F1 score 0.80 0.77 0.72 0.89 0.79 0.89 0.96 0.96

Numerical Calculation Judge

Accuracy (%) 65.0 62.5 70.9 61.3 58.2 73.7 69.4 71.3
Precision (%) 64.2 62.0 67.6 60.3 58.2 69.2 67.2 67.1
Recall (%) 91.5 93.6 97.9 100.0 100.0 100.0 100.0 100.0
F1 score 0.75 0.75 0.80 0.75 0.74 0.82 0.80 0.80

Table 5: Performance of LLM-based judges across different model backends.
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B.7 Judge Failure Examples

Judge Failure Example 1: Toy Case

Problem: Let a, b, c be three non-negative real numbers. Find the largest constant C such that
the following inequality holds for all a, b, c ≥ 0:(

a2 + 1
) (

b2 + 1
) (

c2 + 1
)
≥ (ab+ bc+ ca− abc)2 + C · abc

Response snippet:
Let a = b = c = t, the inequality becomes:

(t2 + 1)3 ≥ (3t2 − t3)2 + Ct3

After expanding the both sides and dividing both sides by t3 (for t > 0):

6t2 − 6t+
3

t
+

1

t3
≥ C

Now, let’s minimize f(t) = 6t2 − 6t+ 3
t +

1
t3 for t > 0.

... (Checking the minimum)

So, at t = 1, f(1) = 4 is indeed the minimum.
From the above, for all other values of t, f(t) > 4, so the final answer is C = 4 .

Expected evaluation for the judge:
The solution applies a toy-case simplification by assuming a = b = c = t, and analyzes f(t)
to draw conclusions about the general case. However, using the symmetric case alone does
not guarantee correctness for arbitrary a, b, c, as it only examines one case in the domain. This
reasoning lacks general validity. Therefore, the answer is False .

Wrong evaluation from the judge:
The solution applies a general calculus-based method by reducing to the symmetric case
a = b = c = t. It computes f ′(t) to find the global minimum of f(t). This is logical solid. The
response didn’t use any special case to draw the final conclution. Therefore, the answer is True .

Expert comment:
The model incorrectly treats a rigorous analysis within a symmetric toy case (i.e., a = b = c) as a
general proof for all a, b, c ≥ 0 (red-highlighted part). While the calculus applied to the reduced
case is mathematically sound, it only verifies the inequality along a one-dimensional slice of the
domain. The failure to recognize this as a toy-case argument highlights a current limitation of
the toy-case judge. Future work should focus on distinguishing between mathematically valid
special-case analysis and truly general reasoning in inequality proofs.
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Judge Failure Example 2: Logical Gap

Problem: Let x, y, z ∈ [0, 1]. Determine the minimal constant C such that the following
inequality holds for all x, y, z:

x(x− y)(z − x) ≤ C.

Solution snippet:
With out loss of generality, we can assume that y = z = 1. Then, f(x, 1, 1) = −x(x− 1)2.
Take derivative:

d

dx
(−x3 + 2x2 − x) = −3x2 + 4x− 1

Set to zero:
−3x2 + 4x− 1 = 0 =⇒ 3x2 − 4x+ 1 = 0

Quadratic formula:

x =
4±

√
16− 12

6
=

4± 2

6
= 1,

1

3

Check at x = 0, 1
3 , 1:

- x = 0: 0
- x = 1

3 : − 1
3 (

1
3 − 1)2 = − 1

3 (
−2
3 )2 = − 1

3 · 4
9 = − 4

27

- x = 1: −1(1− 1)2 = 0

So, maximum is 0, minimum is −4/27. The answer is C =
4

27
.

Expected evaluation for the judge:
The solution begins with a "without loss of generality" (WLOG) assumption by setting
y = z = 1, but provides no justification that this restriction preserves generality over all
x, y, z ∈ [0, 1]. This is a non-trivial reduction and cannot be accepted without proof or argument
showing the extremal case occurs under such a setting. As a result, there is a logical gap at the
very first step. Therefore the answer is False .

Wrong evaluation from the judge:
The response finds the maxima of the expression on [0,1] by taking derivatives and checking
endpoint. All derivative steps are shown, all critical points are checked, and no unsupported
non-trivial claim is made. Therefore the answer is True .

Expert comment:
The model fails to question the initial assumption y = z = 1 made under a "without loss of
generality" claim. It incorrectly accepts this reduction as valid and proceeds to verify the logical
steps under that restricted case only (red-highlighted part). However, the validity of the WLOG
assumption is itself non-trivial and requires justification. Ignoring this unjustified narrowing
of the domain represents a key limitation of the current logical gap judge—it focuses only on
deductive soundness within a given case, while overlooking whether the case itself is validly
chosen. Addressing such domain-level reasoning gaps remains an important direction for future
work.
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Judge Failure Example 3: Numerical Approximation

Problem: Let x, y, z be positive real numbers such that xy + yz + zx ≥ 3. Find the largest
constant C such that the following inequality holds for all x, y, z satisfying the given constraint:

x√
4x+ 5y

+
y√

4y + 5z
+

z√
4z + 5x

≥ C

Solution snippet:
...
Therefore, our inequality becomes:

3 3

√
abc√
779abc

≥ C

After Simplifying, we can get:

3 3

√
1√
779

≥ C

Let’s calculate this value:
3 ∗ (779−1/6) ≈ 1.0845

Therefore, the largest constant C that satisfies the inequality is approximately 1.0845.
The answer is C = 1.0845 .

Expected evaluation for the judge:
The solution replaces an exact symbolic expression with a numerical approximation (e.g.,
3 · 779−1/6 ≈ 1.0845) and uses that approximation as the final value for C. This constitutes a
form of approximate reasoning, since it treats the numerical value as if it were an exact bound
and uses to derive the final answer. Therefore, the reasoning is not fully rigorous, and the answer
is False .

Wrong evaluation from the judge:
Providing a decimal approximation for the final constant is acceptable, because it is not used to
support further reasoning or intermediate steps in the proof. Since the approximation serves only
as a restatement of the exact result, it does not compromise the rigor of the overall argument.
Therefore, the answer is True .

Expert comment:
The model incorrectly assumes that providing a numerical approximation for the final answer
does not constitute further use of approximation in reasoning (red-highlighted part). However, in
this case, the decimal value is not merely illustrative—it is used as the final reported value of
C, effectively replacing the exact symbolic expression. The judge fails to distinguish between
benign approximations used for interpretation and those used as part of the core logical argument.
This reflects a current limitation of the Numerical Approximation Judge, and addressing this
distinction should be a focus of future work.
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Judge Failure Example 4: Numerical Calculation

Problem: Let a, b, c be positive real numbers such that a+ b+ c = 3. Determine the maximal
constant C such that the following inequality holds for all a, b, c:

a

1 + 2b3
+

b

1 + 2c3
+

c

1 + 2a3
≥ C.

Solution snippet:
...
Let’s check some special cases:

- a = b = 1.4, c = 3− 2.8 = 0.2
- 1 + 2t3 = 1 + 2 · (1.4)3 = 1 + 2 · 2.744 = 1 + 5.488 = 6.488
- 1 + 2c3 = 1 + 2 · (0.2)3 = 1 + 2 · 0.008 = 1 + 0.016 = 1.016

So, the sum is: 0.216 + 1.378 + 0.0308 ≈ 1.625
As for another cases,

- a = b = 0.5, c = 2
- 1 + 2t3 = 1 + 2 · 0.125 = 1.25
- 1 + 2c3 = 1 + 2 · 8 = 17
- S = 0.4 + 0.0294 + 1.6 = 3.1294

Expected evaluation for the judge:
<Extracted Expressions>:

1. 1 + 2 · (1.4)3 = 1 + 2 · 2.744
2. 1 + 2 · 2.744 = 1 + 5.488
3. 1 + 5.488 = 6.488
4. 0.216 + 1.378 + 0.0308 ≈ 1.625
5. 1 + 2 · 0.125 = 1.25
6. 1 + 2 · 8 = 17
7. S = 0.4 + 0.0294 + 1.6 = 3.1294

<Codes>: (Correct codes for verifying the listed expressions above.)
<Answer>: False

Wrong evaluation from the judge:
<Extracted Expressions>:
1. 1 + 2 · (1.4)3 = 1 + 2 · 2.744
<Codes>: (Correct codes for verifying the listed expressions above.)
<Answer>: True

Expert comment:
The red-highlighted part contains an incorrect computation, but the numerical computation judge
fails to extract the corresponding expression for verification. This highlights a limitation of our
current system: although the judge can correctly evaluate expressions once they are identified, its
inability to extract certain arithmetic computations—especially when embedded in multi-line or
composite expressions—prevents it from detecting numerical errors. This extraction gap limits
the system’s overall reliability. Addressing this limitation is an important goal for future work.
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C Experimental Details for Inequality Solving

C.1 Experimental Setups

We design task-specific prompts for the two problem types in IneqMath: bound problems and
relation problems. These prompts guide models to produce clear, rigorous reasoning steps and
provide answers in a consistent, machine-parsable format. The query formats are shown below.

Query Prompt for Bound Problems in IneqMath

Task description: Please solve the problem with clear, rigorous, and logically sound steps. At the end
of your response, state your answer in exactly this format: “The answer is C = X”, where X is your
calculated numerical bound value. Example: “The answer is C = 1”.

Problem: {bound_problem}

Query Prompt for Relation Problems in IneqMath

Task description: Please solve the problem with clear, rigorous, and logically sound steps. At the end of
your response, state your answer in exactly this format: “The answer is (Letter) Symbol”, where Letter is
one of the given options. Example: “The answer is (A) ≤”.

Problem: {relation_problem}

We evaluate a diverse set of 29 leading LLMs, as listed in Table 6. Each model is accessed via its
official API using standardized decoding parameters. By default, we set the maximum token output
to 10,000 (via max_tokens=10K), temperature to 0.0, and top_p to 0.99, for all models where
these settings are applicable. For reasoning models, the default reasoning effort is chosen as medium.
Model-specific parameters are specified in the table.
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# Model Name Model Engine Name Source Unique Params

Open-source Chat LLMs

1 Gemma-2B [51] gemma-2b-it Link max_tokens=6K

2 Gemma-2-9B [51] gemma-2-9b-it Link max_tokens=6K

3 Llama-4-Maverick [36] Llama-4-Maverick-17B-128E-Instruct-FP8 Link -
4 Llama-4-Scout [37] Llama-4-Scout-17B-16E-Instruct Link -
5 Llama-3.1-8B [1] Llama-3.1-8B-Instruct-Turbo Link -
6 Llama-3.2-3B [2] Llama-3.2-3B-Instruct-Turbo Link -
7 Qwen2.5-Coder-32B [24] Qwen2.5-Coder-32B-Instruct Link

8 Qwen2.5-7B [48] Qwen2.5-7B-Instruct-Turbo Link -
9 Qwen2.5-72B [47] Qwen2.5-72B-Instruct-Turbo Link -

Proprietary Chat LLMs

10 Gemini 2.0 Flash [16] gemini-2.0-flash Link max_output_tokens=10K

11 Gemini 2.0 Flash-Lite [17] gemini-2.0-flash-lite Link max_output_tokens=10K

12 GPT-4o [39] gpt-4o-2024-08-06 Link -
13 GPT-4o mini [40] gpt-4o-mini-2024-07-18 Link -
14 GPT-4.1 [42] gpt-4.1-2025-04-14 Link -
15 Grok 3 [60] grok-3-beta Link -

Open-source Reasoning LLMs

16 DeepSeek-R1 [11] DeepSeek-R1 Link -
17 DeepSeek-R1 (Llama-70B) [9] DeepSeek-R1-Distill-Llama-70B Link -
18 DeepSeek-R1 (Qwen-14B) [10] DeepSeek-R1-Distill-Qwen-14B Link -
19 Qwen3-235B-A22B [49] Qwen3-235B-A22B-fp8-tput Link -
20 QwQ-32B [3] QwQ-32B Link -
21 QwQ-32B-preview QwQ-32B-Preview Link -

Proprietary Reasoning LLMs

22 Claude 3.7 Sonnet [4] claude-3-7-sonnet-20250219 Link -
23 Gemini 2.5 Flash [18] gemini-2.5-flash-preview-04-17 Link max_output_tokens=10K

24 Gemini 2.5 Pro [19] gemini-2.5-pro-preview-03-25 Link max_output_tokens=10K

25 Grok 3 mini [61] grok-3-mini-beta Link

26 o1 [41] o1-2024-12-17 Link max_completion_tokens=10K

27 o3 [44] o3-2025-04-16 Link max_completion_tokens=10K

28 o3-mini [43] o3-mini-2025-01-31 Link max_completion_tokens=10K

29 o4-mini [44] o4-mini-2025-04-16 Link max_completion_tokens=10K

Table 6: List of LLMs evaluated in our experiments. Default parameters are max_tokens=10K,
temperature=0, and top_p=0.99 (if applicable for the respective model); model-specific parameters
are specified in the table.
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C.2 Model Failure Solution Examples

C.2.1 Model Failure Solution Example 1

Failure Example 1: Correct Answer with Incorrect Steps (Toy Case)

Problem: Let a, b, c be positive real numbers. Consider the following inequality:

a+
√
ab+ 3

√
abc

3
()

3

√
a · a+ b

2
· a+ b+ c

3

Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

Ground truth: (A) ≤

Concise solution: Applying AM ≥ GM we get

3

√
ab · a+ b

2
≥

3

√
ab ·

√
ab =

√
ab

Using the AM ≥ GM three times and add them together, we obtain

3

√
1

a
· 2

a+ b
· 3

a+ b+ c

(
a+

3

√
ab · a+ b

2
+

3
√
abc

)
≤ 3

i.e.
a+

√
ab+ 3

√
abc

3
≤ a+

3

√
ab · a+ b

2
+

3
√
abc ≤ 3

√
a · a+ b

2
· a+ b+ c

3

Therefore, the answer is (A) ≤ .

Response by GPT-4.1: Let’s try to find a relation or test with specific values:
<Test 1>: a = b = c = 1

LHS :
1 +

√
1 · 1 + 3

√
1 · 1 · 1

3
= 1, RHS :

3

√
1 · 1 + 1

2
· 1 + 1 + 1

3
= 1.

Equality holds for a = b = c.
<Test 2>: a = 1, b = 4, c = 16

LHS =
1 + 2 + 4

3
=

7

3
=

3

√
686

54
, RHS =

3

√
1 · 5

2
· 7 =

3

√
35

2
=

3

√
945

54

So,
LHS < RHS.

(Trying other special cases with LHS < RHS ...)

Therefore, the numerical tests strongly support: LHS ≤ RHS. So, the answer is (A) ≤ .

Expert comment:
The model arrives at the correct answer by testing special cases like a = b = c = 1 and
a = 1, b = 4, c = 16 (red-highlighted part), observing that LHS ≤ RHS numerically. However,
it does not provide a general proof or inequality-based reasoning to justify the result. This
means the model is guessing the inequality direction based on limited examples, which is
methodologically invalid despite yielding the correct final answer.
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C.2.2 Model Failure Solution Example 2

Failure Example 2: Correct Answer with Incorrect Steps (Logical Gap)

Problem: Let a, b, c, d, e be positive real numbers such that a+ b+ c+ d+ e = 5. Find the
minimal constant C such that the following inequality holds for all a, b, c, d, e satisfying the
given constraint:

abc+ bcd+ cde+ dea+ eab ≤ C.

Ground truth: C = 5

Concise solution:
Without loss of generality, we may assume that e = min{a, b, c, d, e}.
By AM ≥ GM , we have

abc+ bcd+ cde+ dea+ eab = e(a+ c)(b+ d) + bc(a+ d− e)

≤ e

(
a+ c+ b+ d

2

)2

+

(
b+ c+ a+ d− e

3

)3

=
e(5− e)2

4
+

(5− 2e)3

27

= 5− 5(e− 1)2(e+ 8)

108
≤ 5

Equality holds if and only if e = e = min{a, b, c, d, e} = 1, i.e. a = b = c = d = e = 1.
Therefore, the answer is C = 5 .

Response by o4-mini:
By symmetry under the cyclic shift (a, b, c, d, e) 7→ (b, c, d, e, a), any interior maximizer must
have

a = b = c = d = e.

Since a+ b+ c+ d+ e = 5, this forces

a = b = c = d = e = 1.

At this point,
S = 5 · (1 · 1 · 1) = 5.

Since we know what the global maximum is reached when every variables are the same (i.e.
a=b=c=d=e), the global maximum of S under a+ b+ c+ d+ e = 5 is attained at the interior
point a = b = c = d = e = 1, and its value is

C = 5.

Therefore, the answer is C = 5 .

Expert comment:
The model incorrectly assumes that symmetry implies the maximum is always achieved in
every cases (red-highlighted part). This is not generally true and requires proof in each case.
In this problem, the model happens to guess correctly that the global maximum occurs at
a = b = c = d = e, but the reasoning is unjustified and relies on a flawed heuristic rather than a
rigorous argument.
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C.2.3 Model Failure Solution Example 3

Failure Example 3: Correct Answer with Incorrect Steps (Numerical Approximation)

Problem: Let a, b, c be positive real numbers such that a+ b+ c = 3. Consider the inequality:

a2

a+ 2b3
+

b2

b+ 2c3
+

c2

c+ 2a3
() 1.

Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

Ground truth: (B) ≥

Concise solution:
Applying AM ≥ GM gives us

a2

a+ 2b3
= a− 2ab3

a+ 2b3
≥ a− 2ab3

3
3
√
ab4

= a− 2ba2/3

3

Analogously, we can got

a2

a+ 2b2
+

b2

b+ 2c2
+

c2

c+ 2a2
≥ (a+ b+ c)− 2

3

(
ba2/3 + cb2/3 + ac2/3

)
≥ (a+ b+ c)− 2

3
· b(2a+ 1) + c(2b+ 1) + a(2c+ 1)

3

≥ (a+ b+ c)− 2

3
· 3(a+ b+ c) + 2(a+ b+ c)2

9
= 1

Response by o3-mini:
Step 1. Check the equality case.
Take a = b = c = 1, we have:

a2

a+ 2b3
+

b2

b+ 2c3
+

c2

c+ 2a3
=

1

3
+

1

3
+

1

3
= 1

This suggests that if an inequality holds, it must achieve equality at a = b = c = 1.

Step 2. Test an unbalanced case.
Take a = 2.5, b = 0.4, c = 0.1, so a+ b+ c = 3.

a2

a+ 2b3
=

(2.5)2

2.5 + 2 · (0.4)3 =
6.25

2.5 + 2 · 0.064 =
6.25

2.628
≈ 2.377.

b2

b+ 2c3
=

(0.4)2

0.4 + 2 · (0.1)3 =
0.16

0.4 + 0.002
=

0.16

0.402
≈ ≈ 0.397.

c2

c+ 2a3
=

(0.1)2

0.1 + 2 · (2.5)3 =
0.01

0.1 + 2 · 15.625 =
0.01

31.35
≈ 0.00032.

Adding all three terms:
2.377 + 0.397 + 0.00032 ≈ 2.774 > 1.

We conclude that:
a2

a+ 2b3
+

b2

b+ 2c3
+

c2

c+ 2a3
≥ 1

for all positive a, b, c with a+ b+ c = 3, with equality only when a = b = c = 1.
Therefore, the final answer is (B) ≥ .

Expert comment:
The model not only uses special cases to judge the inequality but also relies on numerically summing
approximate values—an unsound mathematical approach. This method suffers from precision loss when
summing approximations (see red-highlighted part), especially when the result is near 1. While the sum in
this case is clearly greater than 1, such reasoning can be misleading in borderline cases. Thus, the model’s
conclusion lacks rigorous justification.
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C.2.4 Model Failure Solution Example 4

Failure Example 4: Correct Answer with Incorrect Steps (Numerical Computation)

Problem: Let a, b, c be the lengths of the sides of a triangle, such that a+ b+ c = 3. Consider
the following inequality:

a2 + b2 + c2 +
4abc

3
()

13

3
Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

Ground truth: (B) ≥

Concise solution:
Let a = x+ y, b = y + z and c = z + x, we have x+ y + z = 3

2 .
Since AM ≥ GM , we get

xyz ≤
(
x+ y + z

3

)3

=
1

8
.

Now we obtain

a2 + b2 + c2 +
4abc

3
=

(
a2 + b2 + c2

)
(a+ b+ c) + 4abc

3

=
4

3

(
(x+ y + z)3 − xyz

)
≥ 4

3

((
3

2

)3

− 1

8

)
=

13

3

Equality occurs if x = y = z, i.e. a = b = c = 1. Therefore, the answer is (B) ≥ .

Response by GPT-4o:

Let a = x+ y, b = y + z, c = z + x. Then

a+ b+ c = 2(x+ y + z) = 3 ⇒ x+ y + z =
3

2
.

By the AM–GM inequality,

xyz ≤
(
x+ y + z

3

)3

=

(
1

2

)3

=
1

6
.

Now compute:

a2 + b2 + c2 +
4abc

3
=

4

3

(
(x+ y + z)3 − xyz

)
≥ 4

3

((
3

2

)3

− 1

6

)
=

79

18
>

13

3

Finally, test equality case a = b = c = 1. Then:

a2 + b2 + c2 +
4abc

3
= 3 +

4

3
=

13

3
.

So equality holds when a = b = c = 1. Therfore, the answer is (B) ≥ .

Expert comment:
The numerical mistake is that

(
1
2

)3 was incorrectly computed as 1
6 (red-highlighted part) instead

of the correct 1
8 . This overestimates the final value of the expression. However, the direction of

the inequality remains correct purely by coincidence. In this case, the miscalculation happens to
not affect the inequality direction, but the reasoning itself is not mathematically sound.
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C.2.5 Model Failure Solution Example 5

Failure Example 5: Incorrect Answer with Incorrect Steps

Problem: Let a, b, c be non-negative real numbers. Consider the following inequality:

a

4b2 + bc+ 4c2
+

b

4c2 + ca+ 4a2
+

c

4a2 + ab+ 4b2
()

1

a+ b+ c
.

Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

Ground truth: (B) ≥

Concise solution:
By the Cauchy-Schwarz inequality we have∑

cyc

a

4b2 + bc+ 4c2
≥ (a+ b+ c)2

4a (b2 + c2) + 4b (c2 + a2) + 4c (a2 + b2) + 3abc

Based on Schur’s inequality,

a3 + b3 + c3 + 3abc ≥ a
(
b2 + c2

)
+ b

(
c2 + a2

)
+ c

(
a2 + b2

)
So,

(a+ b+ c)3 ≥ 4a
(
b2 + c2

)
+ 4b

(
c2 + a2

)
+ 4c

(
a2 + b2

)
+ 3abc

Then,
(a+ b+ c)2

4a (b2 + c2) + 4b (c2 + a2) + 4c (a2 + b2) + 3abc
≥ 1

a+ b+ c

Equality holds when a=b=c. Therefore, the answer is (B) ≥ .

Response by GPT-4o mini:

Case 2: a = 2, b = 1, c = 0

LHS =
2

4 + 0 + 0
+

1

0 + 0 + 16
+ 0 =

1

2
+

1

16
=

9

16
, RHS =

1

2 + 1 + 0
=

1

3
.

So LHS > RHS.
Case 3: a = 0, b = 1, c = 2

LHS = 0 +
2

16
+

2

8
=

1

16
+

1

4
=

5

16
, RHS =

1

0 + 1 + 2
=

1

3
.

So LHS < RHS.
Conclusion:
One case gives >, one gives <. Therefore, the inequality does not always hold in a single
direction. Therefore, the answer is (F) None of the above

Expert comment:
The model’s conclusion is incorrect due to a numerical error in Case 3. Specifically, the term 2

16

was mistakenly written as 1
16 (red-highlighted part), which caused the left-hand side (LHS) to be

underestimated. As a result, the model falsely concluded that LHS < RHS in that case, leading it
to believe the inequality does not always hold in one direction. In fact, correcting this error
restores the inequality LHS ≥ RHS, consistent with the correct answer (B) ≥.
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C.3 Taking Annotated Theorems as Hints

Prior studies, such as TheoremQA [7] and LeanDojo [66], show that explicitly providing relevant
theorems aids LLMs in mathematical reasoning. To quantify this benefit on IneqMath, we evaluated
models on 200 training problems where the annotated “golden” theorems were provided as hints.
Results (Figure 12) reveal a consistent uplift in overall accuracy across models, with gains reaching
up to 11% (e.g., for o3-mini), alongside moderate improvements in answer accuracy (Figure 13).
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Figure 12: Model performance with annotated theorems as hints (Overall Accuracy).
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Figure 13: Model performance when taking annotated theorems as hints (Answer Accuracy).

The following example illustrates how providing LLMs with access to correct theorems significantly
improves their capacity to generate proofs with robust logical structures and step-wise soundness. In
an initial attempt, the o4-mini model arrived at the correct answer by substituting two sets of special
values; however, this method resulted in a flawed step-wise solution. When subsequently equipped
with the “golden theorem”, the model successfully generated a correct solution through its proper
application.
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Taking Annotated Theorems as Hints: Example

Problem: Let a, b, c be the lengths of the sides of a triangle, such that a+ b+ c = 3. Determine
the largest constant C such that the following inequality holds for all a, b, c:

a2 + b2 + c2 +
4abc

3
≥ C.

Related Theorem:
Theorem Zdravko (Mean inequalities): Let a1, a2, . . . , an be positive real numbers. The
numbers

QM =

√
a21 + a22 + · · ·+ a2n

n
, AM =

a1 + a2 + · · ·+ an
n

GM = n
√
a1a2 · · · an and HM =

n
1
a1

+ 1
a2

+ · · ·+ 1
an

are called the quadratic, arithmetic, geometric and harmonic mean for the numbers a1, a2, . . . , an,
respectively, and we have

QM ≥ AM ≥ GM ≥ HM

Equalities occur if and only if a1 = a2 = · · · = an.

Response by o4-mini without a theorem hint (Incorrect response ✗):
Let F (a, b, c) = a2 + b2 + c2 + 4

3abc.
1. Equilateral case: Let a = b = c = 1. Then a+ b+ c = 3, and

F (1, 1, 1) = 12 + 12 + 12 +
4

3
· 1 · 1 · 1 = 3 +

4

3
=

13

3

2. Degenerate case: Let a = b = 0.75, c = 1.5. Then,

F (0.75, 0.75, 1.5) = 0.752 + 0.752 + 1.52 +
4

3
· 0.75 · 0.75 · 1.5 = 4.5

Thus, on the boundary we have F (a, b, c) ≥ 4.5.

A more detailed check of the two-equal-sides slice a = b = x, c = 3 − 2x shows that F (x)
attains its unique minimum 13/3 at x = 1. No other interior configuration yields a smaller value.

Therefore, the answer is C =
13

3
.

(Continued)
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Taking Annotated Theorems as Hints: Example (Continued)

Response by o4-mini with a theorem hit (Correct response ✓): Set a+ b+ c = 3. By the
quadratic–arithmetic mean inequality (QM–AM) in Mean inequalities theorem,

a2 + b2 + c2

3
≥
(a+ b+ c

3

)2
= 1 =⇒ a2 + b2 + c2 ≥ 3.

By the AM–GM inequality in Mean inequalities theorem,

3
√
abc ≤ a+ b+ c

3
= 1 =⇒ abc ≤ 1.

Hence
a2 + b2 + c2 +

4abc

3
≥ 3 +

4 · 1
3

= 3 +
4

3
=

13

3
.

Equality occurs when a = b = c = 1, which indeed form an equilateral triangle with sum 3.
Thus the largest constant C for which the inequality holds for all triangles is

C =
13

3
.

The answer is C = 13/3 .

Expert comment: In the version without the theorem, the model relies on toy-case
evaluations—specifically symmetric and degenerate configurations—to guess the correct
bound (red-highlighted part). In addition, its reasoning includes a clear logical gap: it claims
that “a more detailed check of the two-equal-sides slice a = b = x, c = 3 − 2x” shows the
minimum occurs at x = 1, but provides no explanation or computation to support this claim
(red-highlighted part). This reveals that without access to the theorem, the model struggles to
find a valid proof strategy and falls back on incomplete heuristics.

Once the relevant inequality theorems are provided, the model quickly applies the
QM–AM and AM–GM inequalities in Mean inequalities theorem correctly (blue-highlighted
part). It uses these tools to derive a general lower bound valid for all triangles, leading rigorously
to the correct constant C = 13

3 . This contrast clearly demonstrates the value of theorem access
in enabling the model to reason with precision and mathematical completeness.
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C.4 Retrieval as Augmentation

Retrieving relevant theorems as hints. We also evaluate the impact of theorem-based hints on
answer accuracy. This evaluation was conducted on the same 40-problem subset used in the main
experiments, with models receiving the top-k most frequent theorems from the IneqMath training
set as hints. As shown in Figure 14, providing one or two retrieved theorems tends to reduce
final-answer accuracy for weaker models, such as Grok 3 mini and o3-mini. This drop is likely caused
by misapplication or distraction from the core strategy, as the retrieved theorems may not align well
with the problem at hand.
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Figure 14: Model performance when taking most frequent theorems as hints (Answer Accuracy).

The following example demonstrates how supplying irrelevant theorems can mislead LLMs and
degrade their reasoning quality. Initially, the o3-mini model approached the problem correctly using
symmetric substitution and algebraic manipulation. However, after being provided with the Mean
Inequality theorem—unrelated to the actual solution—it abandoned its structured strategy and instead
attempted to apply AM–GM in Mean inequalities directly, without proper justification. This misstep
led to an incorrect proof, emphasizing the importance of providing contextually relevant theorems
rather than generic or loosely related ones.
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Retrieving Relevant Theorems as Hints: Example

Problem: Let a, b, c be positive real numbers. Consider the following inequality:∑
cyc

b+ c√
(a+ b)(a+ c)

() 2
∑
cyc

2a

2b+ c
.

Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

Response by o4-mini without theorems (Correct response ✓):
First note the elementary two-term bound, valid for all positive u, v:

2u

2v + w
+

2u

2w + v
− v + w√

(u+ v)(u+ w)
=

(√
(u+ v)(u+ w)− u

)2√
(u+ v)(u+ w) (2v + w)(2w + v)

> 0.

If expanding and simplifying that difference you arrive precisely at

v + w√
(u+ v)(u+ w)

<
2u

2v + w
+

2u

2w + v
.

Now set (u, v, w) = (a, b, c), and sum the resulting three inequalities cyclically.
On the right you get

∑
cyc

[
2a

2b+c
+ 2a

2c+b

]
= 2

∑
cyc

2a
2b+c

. While on the left you recover
∑

cyc
b+c√

(a+b)(a+c)
.

Thus in full generality ∑
cyc

b+ c√
(a+ b)(a+ c)

< 2
∑
cyc

2a

2b+ c
,

Therefore, the answer is (D) <

Irrelevant theorem provided: Theorem Zdravko (Mean inequalities): Let a1, a2, . . . , an be
positive real numbers. The numbers

QM =

√
a2
1 + a2

2 + · · ·+ a2
n

n
, AM =

a1 + a2 + · · ·+ an

n

GM = n
√
a1a2 · · · an and HM =

n
1
a1

+ 1
a2

+ · · ·+ 1
an

are called the quadratic, arithmetic, geometric and harmonic mean for the numbers a1, a2, . . . , an,
respectively, and we have

QM ≥ AM ≥ GM ≥ HM

Equalities occur if and only if a1 = a2 = · · · = an.

Response by o4-mini with theorem provided (Incorrect response ✗):
First, when a = b = c = 1, we have

LHS =
∑
cyc

b+ c√
(a+ b)(a+ c)

= 3, RHS = 2
∑
cyc

2a

2b+ c
= 4.

Hence at a = b = c,
LHS = 3 < RHS = 4.

A more detailed inequality-chasing via AM–GM in Mean inequalities theorem shows the strict “<” persists
for all positive a, b, c.
Therefore, the answer is (D) <

Expert comment: Without theorems, the model solves the problem accurately by constructing
a detailed inequality using symmetric substitution and algebraic manipulation. However, when given the
Mean Inequality theorem—which is unrelated to the problem—it becomes confused. Instead of following
the previous structured reasoning, it resorts to a surface-level AM–GM (Mean inequalities) without general
proof or justification (red-highlighted part). This highlights the importance of supplying relevant theorems.
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Retrieving training problems as demonstrations. Building on our observation that providing
relevant theorems can enhance performance in inequality reasoning (§5.4, §C.3, §C.4), we now
investigate whether using training problems with step-wise solutions as demonstrations is similarly
beneficial. For this study, we selected training problems whose solutions utilize the top-k most
frequent theorems. As shown by the overall accuracy in Figure 15, Grok 3 mini’s performance
improves from a baseline of 10% (with no demonstration problem) to 13% when provided with
one such problem. However, its accuracy drops sharply to 3% when two problems are used as
demonstrations. Similarly, Gemini 2.5 Pro peaks at 53% accuracy with one demonstration problem,
declining to 45% with two. o4-mini reaches 23% accuracy with one demonstration problem, a 3%
increase from its 20% baseline (without demonstrations).

The answer accuracy, presented in Figure 16, exhibits similar instability. These varied outcomes
suggest that while limited guidance can aid reasoning, an excess of demonstrations may overwhelm
the model or exhaust its context capacity, leading to performance degradation.
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Figure 15: Model performance when taking example solutions associated with the top-k frequent
theorems as hints (Overall Accuracy).
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Figure 16: Model performance when taking example solutions associated with the top-k frequent
theorems as hints (Answer Accuracy).

The following example showcases how a well-matched question–solution pair can help LLMs
overcome initial reasoning flaws and adopt more rigorous proof techniques. The model originally
relied on symmetry-based heuristics and invoked second-derivative arguments without computation,
resulting in a weak justification. After being presented with a relevant example involving convexity
and Jensen’s inequality, it successfully reproduced the key steps—verifying convexity analytically and
applying the correct inequalities with full justification. This illustrates the potential of high-quality
exemplars to steer models toward structured and mathematically sound reasoning.
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Retrieving Training Problems as Demonstrations: Example

Question: Let a, b > 0 such that a + b = 1. Determine the largest constant C such that the
following inequality holds for all a, b:(

a+
1

a

)2

+

(
b+

1

b

)2

≥ C.

Ground truth: C =
25

2

Response by o4-mini without examples (Incorrect response ✗):
Define f(a) =

(
a+ 1

a

)2
+
(
(1− a) + 1

1−a

)2
, 0 < a < 1.

1. The function f is symmetric about a = 1
2 . Hence any interior extremum must occur at a = 1

2 .
2. At a = 1

2 , we have f
(
1
2

)
= 2 · 25

4 = 25
2 .

3. Checking the second derivative shows this is indeed a minimum. The answer is C =
25

2
.

Example questions:Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3abc. Find the
largest constant C such that the following inequality holds for all a, b, c satisfying the given
constraint:

a

b2c2
+

b

c2a2
+

c

a2b2
≥ C

a+ b+ c

Example solution: The given inequality is equivalent to(
a3 + b3 + c3

)
(a+ b+ c) ≥ 9a2b2c2

Applying the Cauchy-Schwarz inequality we have(
a3 + b3 + c3

)
(a+ b+ c) ≥

(
a2 + b2 + c2

)2
Since a2 + b2 + c2 = 3abc we obtain(

a3 + b3 + c3
)
(a+ b+ c) ≥

(
a2 + b2 + c2

)2
= (3abc)2 = 9a2b2c2

Equality holds if and only if a = b = c = 1. Therefore, the answer is C = 9 .

Response by o4-mini with examples (Correct response ✓): Let a, b > 0 with

a+ b = 1. Define the function f(a) =
(
a+ 1

a

)2
+
(
b+ 1

b

)2
, b = 1− a.

Convexity argument: consider the function h(x) =
(
x+ 1

x

)2
(x > 0).

Compute its second derivative: h(x) = x2 + 2 + 1
x2 , h′′(x) = 2 + 6x−4 > 0, ∀x > 0

Hence h is convex on (0,∞). Since a and b satisfy a + b = 1, by Jensen’s inequality for the
convex function h we have

h(a) + h(b)

2
≥ h

(
a+b
2

)
= h
(

1
2

)
=
(

1
2 + 2

)2
=
(

5
2

)2
=

25

4
.

Thereforef(a) = h(a) + h(b) ≥ 2 · 25
4 = 25

2 ., i.e. The answer is C =
25

2
.

Expert comment: The initial solution lacks rigor: it incorrectly assumes symmetry implies a
unique minimum, and references the second derivative without computing it (red-highlighted
part). However, after being provided with a related example that uses a careful convexity argument
and the Cauchy-Schwarz inequality, the model is able to imitate the correct reasoning. It verifies
convexity via the second derivative, correctly applies Jensen’s inequality, and explicitly justifies
the minimum (blue-highlighted part). This shows that with the right examples, the model can
internalize and reproduce rigorous proof techniques.
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C.5 Self-improvement via Critic as Feedback

In addition to overall accuracy, we also evaluate answer accuracy within the same self-critique setup.
Using 40 randomly selected problems from the IneqMath benchmark, we assess whether one round
of self-revision improves the correctness of final answers. As Figure 17 shows, models like o3-mini
and o4-mini gain 2–5% in answer accuracy after revision. This result further supports self-critique as
a lightweight and supervision-free approach to improve solution reliability in inequality problems.
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Figure 17: Model performance when taking one round of critic as feedback (Answer Accuracy).

The following example illustrates how self-critique can help LLMs identify and correct subtle
reasoning flaws. In the initial attempt, the model arrives at the correct numerical result but relies on
unjustified assumptions. After generating a self-critique, it recognizes the logical gaps and revises its
solution by explicitly verifying key conditions—leading to a more rigorous and mathematically sound
argument. This demonstrates that even a single round of self-feedback can meaningfully improve the
quality of reasoning.

Self-improvement via Critic as Feedback: Example

Problem: Let a, b > 0 such that a + b = 1. Determine the largest constant C such that the
following inequality holds for all a, b:(

a+
1

a

)2

+

(
b+

1

b

)2

≥ C.

Ground truth: C =
25

2
Initial response by o4-mini (Incorrect response ✗):
Define f(a) =

(
a+ 1

a

)2
+
(
(1− a) + 1

1−a

)2
, 0 < a < 1.

1. The function f is symmetric about a = 1
2 . Hence any interior extremum must occur at a = 1

2 .
2. At a = 1

2 , we have f
(
1
2

)
= 2 · 25

4 = 25
2 .

3. Checking the second derivative shows this is indeed a minimum. The answer is C =
25

2
.

(Continued)
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Self-improvement via Critic as Feedback: Example (Continued)

Self-critic feedback by o4-mini:
These are what make this solution incompletely justified:

• symmetry alone guarantees f ′(1/2) = 0, but it does not by itself rule out other critical
points a ̸= 1/2. In general, a symmetric C1-function can have multiple stationary
points symmetrically placed about the center.

• You assert “checking the second derivative shows this is indeed a minimum,” but you
never exhibit f ′′(1/2) or argue it is positive.

Refined solution by o4-mini (Correct response ✓):
Define the function f(a) =

(
a+ 1

a

)2
+
(
(1− a) + 1

1−a

)2
, for a ∈ (0, 1). Let g(x) =

(
x+ 1

x

)2
for x > 0. Then f(a) = g(a) + g(1− a).

Compute:

g(x) = x2 + 2 +
1

x2
, g′(x) = 2x− 2

x3
, g′′(x) = 2 +

6

x4
> 0.

Hence, g is strictly convex on (0,∞).

Since f ′′(a) = g′′(a) + g′′(1 − a) and each term is positive for a ∈ (0, 1), we have
f ′′(a) > 0. Thus, f is strictly convex on (0, 1) A strictly convex C1-function on an open interval
has at most one critical point, which, if it exists, is its global minimum. We compute:

f ′(a) = g′(a)− g′(1− a) = 0

By symmetry, we can solve it and get a = 1
2 . Hence the unique solution of f ′(a) = 0 in (0, 1) is

a = 1
2 .

Therefore, the smallest possible value is C = f

(
1

2

)
=

25

2
.

Expert comment: The initial solution gets the correct value C = 25
2 , but lacks rigor:

it incorrectly assumes symmetry implies a unique minimum, and references the second
derivative without computing it (red-highlighted part). The critic accurately points out these
gaps. The refined solution corrects them by proving convexity through second derivatives and
confirming a = 1

2 is the unique minimizer through first derivatives (blue-highlighted part).
This demonstrates that self-criticism effectively improves the mathematical soundness of the
argument.
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D Limitations

While our work introduces a novel dataset and evaluation judges for LLM-based inequality proving,
we acknowledge several limitations that warrant discussion and offer avenues for future research.

Potential for data contamination. Although we took significant measures to mitigate data leakage
by commissioning novel test problems curated by experts, keeping ground truth answers private, and
utilizing an online leaderboard for evaluation, a residual risk of contamination remains. LLMs possess
vast training corpora, and it is possible they have encountered problems with similar structures or
underlying principles during pre-training, potentially inflating performance beyond true generalization
capabilities. Our expert curation and review process aimed to minimize this, but perfect isolation
from prior knowledge is challenging to guarantee.

Training dataset scale and scope. The IneqMath training set, while meticulously curated with
1,252 problems featuring step-wise solutions, multiple solution paths, and theorem annotations, is
modest in size compared to the massive datasets often used for pre-training or fine-tuning large models.
We prioritized quality and depth (step-wise solutions, theorems) to the challenging Olympiad-level
domain over sheer quantity. While sufficient for benchmarking current models, post-training, and
exploring test-time techniques, this scale might be insufficient for training highly specialized models
from scratch or for capturing the full diversity of inequality types. Future work could focus on scaling
up the dataset while maintaining quality, potentially through community contributions.

Inherent inaccuracies in LLM-as-judge evaluation. Our LLM-as-judge framework demonstrates
high reliability on our development set (F1= 1.0 for final-answer judge, > 0.9 average for step-wise
judges). However, while significantly more scalable than human expert evaluation, these judges
are still imperfect. As illustrated by examples in §B.7, they can occasionally misinterpret complex
reasoning, overlook subtle logical flaws, or fail to correctly assess nuanced mathematical arguments.
The current set of step-wise judges targets common failure modes but does not cover all possible error
types, such as the correctness of complex symbolic transformations or the optimal choice of strategy.
Potential improvements include using more powerful (but potentially more expensive) LLMs as judge
backends (e.g., o3), developing specialized judges trained on annotated errors, or adding judges for
specific mathematical operations like symbolic manipulation verification.

Mitigation, not elimination, of answer guessability. The inclusion of step-wise judges significantly
mitigates the issue of models guessing the correct final answer without sound reasoning. However, it
does not eliminate this possibility entirely. A model might still arrive at the correct bound or relation
through chance or heuristics and support it with plausible-sounding, yet flawed, intermediate steps
capable of misleading one or more judges. The requirement to pass all judges reduces this risk, but the
fundamental challenge of distinguishing genuine mathematical insight from convincing yet spurious
reasoning remains.

Computational cost of evaluation. While more efficient than manual expert grading, our multi-
judge evaluation protocol is computationally more intensive than simple final-answer checking (e.g.,
string matching). Evaluating each solution requires multiple LLM inferences (one for the final answer,
four for step-wise checks). This cost scales linearly with the number of models and problems being
evaluated and could become a factor in very large-scale benchmarking efforts.

E Broader Impacts

This research focuses on advancing the mathematical reasoning capabilities of LLMs, specifically
in the domain of inequality proving. While the work is primarily foundational and unlikely to lead
directly to malicious applications such as disinformation or surveillance, potential negative societal
impacts could arise from the misuse or misinterpretation of the technology. The most significant risk
stems from over-reliance on LLM-generated proofs that may appear correct superficially (achieving
high answer accuracy) but contain critical logical flaws, as demonstrated by the sharp drop in
performance under our step-wise evaluation. If such flawed proofs were uncritically accepted in fields
requiring mathematical rigor, such as scientific modeling, engineering design, or financial analysis, it
could lead to incorrect conclusions, faulty systems, or economic miscalculations. Our contribution of
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a rigorous, step-wise evaluation methodology serves as a potential mitigation strategy by promoting
transparency and enabling the identification of fragile reasoning chains, thereby encouraging cautious
deployment and emphasizing the need for verification, especially in high-stakes applications. The
public release of the IneqMath benchmark further supports community efforts in understanding and
improving the reliability of LLM reasoning.
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