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Abstract

Faithful evaluation of language model capabilities is crucial for deriving actionable insights that can inform
model development. However, rigorous causal evaluations in this domain face significant methodological
challenges, including complex confounding effects and prohibitive computational costs associated with exten-
sive retraining. To tackle these challenges, we propose a causal representation learning framework wherein
observed benchmark performance is modeled as a linear transformation of a few latent capability factors.
Crucially, these latent factors are identified as causally interrelated after appropriately controlling for the base
model as a common confounder. Applying this approach to a comprehensive dataset encompassing over 1500
models evaluated across six benchmarks from the Open LLM Leaderboard, we identify a concise three-node
linear causal structure that reliably explains the observed performance variations. Further interpretation of
this causal structure provides substantial scientific insights beyond simple numerical rankings: specifically,
we reveal a clear causal direction starting from general problem-solving capabilities, advancing through
instruction-following proficiency, and culminating in mathematical reasoning ability. Our results underscore
the essential role of carefully controlling base model variations during evaluation, a step critical to accurately
uncovering the underlying causal relationships among latent model capabilities.1

1 Introduction

State-of-the-art large language models (LMs) have exhibited exceptional proficiency across a wide
spectrum of intricate natural language processing tasks, encompassing text generation, summa-
rization, question answering, and creative language synthesis (BMR+20, AAA+23, GDJ+24, Ant24,
AAA+24, YYZ+24, GYZ+25). These billion-parameter models are often pre-trained extensively on
diverse web corpora and undergoes various post-training stages including supervised fine-tuning
(SFT), reinforcement learning with human feedback (RLHF) (OWJ+22, BJN+22) to enable down-
stream model deployment. These complicated system engineerings make it hard to evaluate how
models acquire capabilities and derive scientific claims thereafter.
In particular, rigorous evaluation of post-training presents notable difficulties: (i) Costs and het-
erogenity in pre-training: implementation details such as data mixture, model architecture, etc,
are often proprietary and vary greatly across institutions. For example, models might be subject to
contamination on benchmark data (GS23); the heterogeneity of base models leads to evidence that
the benefits of post-training on reasoning abilities can differ substantially even between models of
comparable size (GCS+25, ZMK+25, HBU+25). Even with transparent pre-training recipes, training
from scratch to control for these confounders through rigorous controlled studies implies prohibitive

1Blog post: https://hanlin-zhang.com/causal-capabilities.
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costs (CRF+24, QNA+25). (ii) Intricate interdependencies among distinct capabilities — such as
reasoning, few-shot learning, and instruction-following further complicates evaluation. For exam-
ple, fine-tuning on instruction data might not improve knowledge-intensive question answering
capabilities (GEK+24, GWS+23). Although various capabilities often seem to co-emerge or interact
synergistically as model scale increases (OWJ+22, ZCY+25, CSDC25, LBS+25), rigorous theoretical
frameworks can aid in understanding which capability to target in post-training.
Our research pioneers a novel approach to these persistent challenges by introducing the first
framework for modeling capability factors through an explicit structured representation. The
cornerstone of our methodology rests on a crucial insight: the heterogeneity observed across diverse
domains (HZZ+20, JS24, ZXNZ24) – rather than being merely an obstacle – actually provides
valuable "multi-view" perspectives into the shared latent capability structures across different base
models. This lens enables us to identify and characterize these underlying structures with strong
guarantees.
To establish the theoretical foundation for our investigation, we propose two hypotheses:

1. Capability-Performance Invariance: A small, distinguishable set of latent capability factors gov-
erns benchmark performance, maintaining consistent relationships across diverse base models.

2. Hierarchical Capability Structure: Within any individual base model, these capabilities organize
themselves into a hierarchical framework representable as a directed acyclic graph (DAG) (Pea95).
In this structure, an edge A → B signifies that interventions targeting capability A can propagate
through the model’s internal mechanisms to influence capability B, revealing causal pathways of
skill development.

Base Model

Capability
A

Capability
B

Capability
C

Fine-tuning
(Intervention)

Benchmark 1 Benchmark 2 Benchmark 3

Pretraining Effect
Capability A Effect
Capability B Effect
Direct Fine-tuning
Indirect Fine-tuning
Capability → Benchmark

Hierarchical Structure of Model Capabilities

Source
variable 1

Source
variable 2

Source
variable 3

Capability
A

Capability
B

Capability
C

Figure 1: Example of a Hierarchical model of capa-
bilities influencing benchmark performance (top)
and hypothesized mechanism (bottom).

While the first hypothesis has been explored
in a series of recent studies (RMH24, RBK+25,
PSC+24), the second represents a novel contri-
bution to the literature, although the hierarchi-
cal structure of human capabilities has been an
active and influential research area in philoso-
phy (Sim12), cognitive science (Car93, And96,
ABB+04, KCB09, TKGG11) and neuroscience
(KOK03, BD07). To illustrate this idea, consider
a language model fine-tuned on instruction-
following data: such tuning may indirectly im-
prove its ability to solve mathematical problems,
since successful solutions often require adher-
ing to precise formatting and logical sequenc-
ing—skills closely tied to instruction-following.
This hypothesis formalizes a common intuition:
some capabilities, like instruction-following,
serve as foundational building blocks, while oth-
ers, such as math problem-solving, emerge as
higher-level skills that depend on these core abilities. In this context, it is essential to control for the
base model being used, as it influences all downstream capabilities.
We formalize this hierarchical capability structure within Pearl’s structural causal model framework
(Pea95), treating the base model as a shared latent parent that influences all capability factors and
fine-tuning as an intervention on these latent factors, as illustrated in Figure 1. Under this structural
hypothesis, existing unstructured factorization approaches (such as PCA) for analyzing latent capa-
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bilities (RMH24, RBK+25, PSC+24) may fail to disentangle hierarchical latent factors due to their lack
of causal constraints. Probabilistic latent-variable approaches, such as Item Response Theory (IRT)
models (TTL+25) and Bayesian latent factor models (PN22), require full likelihood specifications
and hand-crafted modeling assumptions. Moreover, all these approaches fail to account for the
base model’s overarching influence on all latent capabilities. Drawing inspiration from the causal
representation learning (CRL) literature, we propose Hierarchical Component Analysis (HCA) that
exploits heterogeneity across base models to recover hierarchical latent capabilities with provable
identifiability guarantees under mild conditions.
We apply HCA to the open LLM leaderboard data2 and show that models fine-tuned from four
base models: Qwen2.5-7B, Qwen2.5-14B, Llama-3-8B, and Llama-3.1-8B can be well-explained by
a linear SCM. We further assign meaningful semantic interpretations to these factors, allowing
practitioners a clear understanding of which capabilities to target during fine-tuning. Indeed,
establishing explicit alignments between learned latent factors and human-interpretable concepts
has remained both a significant and underexplored area within the CRL literature. To address this
gap, we systematically explore correlations between latent factors, established benchmarks, and
the effectiveness of prevalent leaderboard interventions. Moreover, performance on the general-
reasoning parent node—encompassing benchmarks such as MMLU (HBB+20) and BIG-Bench-Hard
(SSS+22)—correlates more strongly with base-model FLOPs, underscoring the importance of scaling
up pre-training compute for downstream problem solving.
The remaining sections are organized as follows. In Section 1.1, we introduce necessary notations
for subsequent sections. In Section 2, we revisit existing PCA approaches and discuss the ignored
heterogeneity caused by the base model being used. We show that this finding can help us impute
missing model performance data with a higher accuracy then the naive matrix completion performed
on the whole leaderboard. In Section 3, we present our key hypothesis and formulate the capability
discovery task as an instance of causal representation learning, and introduce the HCA algorithm
with theoretically optimal identifiability guarantee. In Section 4, we present experimental results
by applying our algorithm to the leaderboard data, and discuss hypothetical interpretations of the
capabilities factors that we learn.

1.1 Notation
Most analysis of this work is based on the open LLM leaderboard, which contains the accuracy of
N0 = 4576 LMs on d = 6 benchmarks. The leaderboard does not directly provide information on
base model,3 so we develop a principled approach to determine the base model from information
in other columns. In this way, we get a subset of models on the original leaderboard that contains
N = 3360 LMs with known base models, which we denote by Θ. The eight most frequently-used
base models includes Llama-3-8B, LLama-3.1-8B, (GDJ+24), Qwen2.5-0.5/7/14B (YYZ+24), Qwen2-
7B (YYZ+24), Mistral-7B (JSM+23) and Gemma-2-9B (TRP+24). Some parts of our analysis also
include other base models into study, which we will explicitly describe. We will denote these eight
base models by θ∗1, θ

∗
2, · · · , θ∗8. We let Θk = {θ1,k, · · · , θNk,k} ⊆ Θ be the set of models using θ∗k as

base model.
For any LM θ and benchmark B, we use xθ,B to denote the accuracy of θ on B, if observed. In our
setting, we observe xθi,k,Bj

for all k ∈ [K], i ∈ [Nk] and j ∈ [d], and we will simply denote this by
x
(k,i)
j . Then x(k,i) =

(
x
(k,i)
j

)d
j=1

is the observed performance vector for model θi,k. The set of all data,{
x(k,i) : k ∈ [K], i ∈ [Nk]

}
, is denoted by X . We also define X(k) =

{
x(k,i) : i ∈ [Nk]

}
. In what

2https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/
3There is a column named ’Base model’ in the leaderboard, but usually that base model is itself a fine-tuned version of,

say, Llama-3-8B.
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follows, we will sometimes abuse notation and view X ′ ⊆ X as a |X ′| × d matrix, where each row
is a performance vector xj ∈ X ′.

2 The Latent Capability Hypothesis

Recently, a line of works developed observational scaling laws (RMH24, RBK+25, PSC+24). The key
hypothesis that make their analyses possible is that the observed benchmark performance is some
linear transformation of low-dimensional latent capability vectors.

Hypothesis 0. There exists some latent capability vector z ∈ Rd0 , d0 < d and some matrix G ∈ Rd×d0 ,
such that x = Gz.
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board data.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Ratio of Residual Length to Original Length

0

5

10

15

20

25

Pr
ob

ab
ili

ty
 D

en
si

ty

All Data
Qwen2.5
Qwen2.5 Mean: 0.0753
Qwen2.5-14B
Qwen2.5-14B Mean: 0.0521
All Data Mean: 0.0865

Sample Sizes: All Data = 4,576  |  Qwen2.5 = 796  |  Qwen2.5-14B = 332

(b) Distance distributions of domain data to the
principal component subspace.

Figure 2: PCA analysis showing low-rank structure and domain hetero-
geneity in leaderboard data.

Principal component
analysis (PCA) pro-
vides a systematic
approach to validate
this hypothesis by
examining whether
the model-accuracy
matrix exhibits an
approximate low-rank
structure. Applying
PCA to the leaderboard
data, we find that the
performance matrix is
approximately rank-3
(as shown in Figure 2a),
aligning closely with previous findings reported by existing works.

qwen2.5-7b

llama-3-8b

qwen2-7b

qwen2.5-14b

llama-3.1-8b

gemma-2-9b

mistr
al-7

b

qwen2.5-0.5b

qwen2.5-7b

llama-3-8b

qwen2-7b

qwen2.5-14b

llama-3.1-8b

gemma-2-9b

mistral-7b

qwen2.5-0.5b

-0.00 0.02 0.01 0.02 0.01 0.27 0.31 0.31

0.02 -0.00 0.01 0.02 0.01 0.23 0.32 0.32

0.01 0.01 -0.00 0.03 0.00 0.24 0.33 0.32

0.02 0.02 0.03 -0.00 0.03 0.23 0.36 0.28

0.01 0.01 0.00 0.03 0.00 0.24 0.34 0.33

0.27 0.23 0.24 0.23 0.24 -0.00 0.05 0.33

0.31 0.32 0.33 0.36 0.34 0.05 0.00 0.42

0.31 0.32 0.32 0.28 0.33 0.33 0.42 0.00

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure 3: Principal component sub-
space similarity across domains.

We next examine whether these patterns persist when we vary
the model subset used for PCA. To this end, we isolate all
Qwen2.5 variants (across scales) and, separately, the Qwen2.5-
14B model. As shown in Figure 2b, the distributions of their
distances from the full-leaderboard rank-3 PC subspace diverge
substantially. This divergence implies that a one-size-fits-all
PCA—applied indiscriminately to every model—can obscure
meaningful heterogeneity unique to particular model families.
To further examine this heterogeneity, we choose the eight most
commonly used base models on the leaderboard as listed in Sec-
tion 1.1, and examine the PC subspaces of their corresponding
domains. Specifically, for each k = 1, 2, · · · , 12, we apply PCA
to the domain data Xk to obtain the rank-3 principal compo-
nent subspace, and then measure the cosine distances between
these subspaces. The similarity matrix is shown in Figure 3,
revealing a striking pattern: five domains (with base models Llama-3-8B, Llama-3.1-8B, Qwen2-7B,
Qwen2.5-7/14B) have roughly the same PC subspaces, whereas the other three lie distinctly apart.
We define Sinv = {1, 2, 4, 5, 6} to be the index set of these seven models and Xinv = ∪k∈Sinv

Xk to be
the corresponding benchmark performance data. Notably, this heterogeneity persists under ICA
(HHH+09), another popular factor analysis method, since PCA and ICA span the same component
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subspace, differing only in how they parametrize the independent sources within it. Overall, we
have found that:

• Performance data exhibit distinct heterogeneity among models fine-tuned from different base
models. This underscores the necessity of controlling for base models when interpreting statistical
results from benchmark evaluations.

• A particular subset of base models emerges, wherein their fine-tuned derivatives consistently
reveal similar latent performance patterns across benchmarks.

In what follows, we build on these observations and introduce a novel latent factor model for LM
capabilities.
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10% 20% 30% 40% 50% 60% 70% 80% 90%
Overall Percentage of Hidden Entries

5

10

15

20

25

30

35

40

45

R
M

SE

Comparison of Global and Local MC-NNR
Global RMSE
Local RMSE

Observed Missing

10% 20% 30% 40% 50% 60% 70% 80% 90%
Percentage of Rows Hidden

0

10

20

30

40

50

R
M

SE

Comparison of Global and Local MC-NNR
Global RMSE
Local RMSE

(a). Random missing pattern. (b). Block missing pattern.

Figure 4: RMSE of global and local matrix completion approaches for two types of missing patterns.

Remark 1. As a brief detour, we show how our findings can help us more accurately impute missing
benchmark performance in the leaderboard. We focus on two distinct missing patterns, illustrated in Figure 4,
and we are interested in the missing performances of models fine-tuned on Qwen2.5-14B. Motivated by the
heterogeneity we observed in the PC subspaces, we apply matrix completion with nuclear norm regularization
(MC-NNR) both within the Qwen2.5-14B domain and across the entire leaderboard. We find that the former
approach yields notably lower reconstruction error. Additional details are provided in Figure 16.

2.1 A Refined Hypothesis

In view of the limitation of Hypothesis 0, we propose the following modification, restricting it to
domains with identical PC subspaces the we identify in Figure 3:

Hypothesis 1. The observed benchmark performance xi ∈ Xinv is governed by a set of latent capability
factors zi ∈ Rd0 , where d0 ≤ d. Moreover, there exists a linear and injective relationship between zi and xi,
meaning that there exists some matrix G ∈ Rd×d0 with full column rank such that xi ≈ Gzi,∀i ∈ Xinv.

In the remainder of this work, we will focus on the base models in Sinv and their corresponding
benchmark performance data Xinv.

3 Learning Hierarchical Language Model Capabilities

In this section, built upon the initial observations in Section 2, we introduce a new approach to
capture invariant laws underlying different domains. Our approach leverages a latent hierarchical
structure among different capability components in zi. To formally describe this latent structure, we
introduce the following definition of linear structural causal models (SCMs) (Pea95).

Definition 1. Given a directed acyclic graph (DAG) G = (V, E) with node set V = [d0] and edge set E , a
linear SCM is a data-generating process of d0 random variables z1, z2, · · · , zd0

with zi =
∑

j∈paG(i)
wjizj +

5



σ
1/2
i ϵi, i ∈ [d] with independent source variables ϵi wuth unit variance, where wij ∈ R are weights and

paG(i) is the parent set of i in G.

z1

z2
z3

ε1

ε2
ε3

(a) A standard SCM with zi’s
being the causal factors.

z1

z2
z3

ε1

ε2
ε3

(b) An inexact SCM where the
ϵi’s can be dependent.

Figure 5: Illustration of
Definition 1.

Intuitively, latent factors earlier in the topological ordering of the DAG
are primitive, while later factors are progressively less primitive, as they
inherits the variability in their ancestors.
In practice, assuming exact SCMs is often too restrictive. We define
inexact SCMs below, which allows the source variables to be entangled
with each other:

Definition 2. A linear α-inexact SCM is a data generating process of
z1, z2, · · · , zd0

with ϵ̂ = Uϵ, zi =
∑

j∈paG(i)
wjizj + σ

1/2
i ϵ̂i, i ∈ [d0] for

some independent source variables ϵi wuth unit variance and some matrix
U = [u1, · · · ,ud0

]⊤ ∈ Rd0×d0 with ∥ui∥2 = 1 and 1
d0

∑d0

i ̸=j u
2
ij ≤ α. Finally,

for a collection C of αi-inexact linear SCMs sharing the same causal graph G,
we define α = maxi αi to be the maximum inexactness coefficient (MIC) of C.

When α = 0, an α-inexact SCM becomes an exact SCM. Hence, the MIC
measures the extent of violating the independence assumption on the
source variables. Given this definition, we are ready to state our second
hypothesis. A graphical illustration of exact and inexact SCMs is given
in Figure 5.

Hypothesis 2. There exists a subset of domain indices in S ⊆ Sinv, such
that for all k ∈ S, the capability factors z(k,i) associated with x(k,i) ∈ Xk are
generated from linear inexact SCMs with some small MIC, and the causal graph
G is invariant across all k’s, while the weights and errors can be domain specific and denoted with w

(k)
ij and

ϵ̂
(k)
i .

Different from all existing works that are restricted to correlation-based analysis, Hypothesis 2
characterizes a causal generative mechanism underlying an LM’s capabilities. Specifically, given a
base model Bk, each independent factor ϵi directly influences exactly one capability zi, while other
capabilities are either unaffected by ϵi or affected only indirectly through zi.
Since Hypothesis 1 and Hypothesis 2 need not hold for every data distribution, it is necessary to
develop a diagnostic that empirically tests their validity in our context. Once this is done, we pursue
two objectives: (1) recover the latent capability factors that drive observed benchmark performance,
and (2) characterize precisely how those capabilities map to performance outcomes.
It turns out that these questions are closely related to recent advances in multi-domain causal
representation learning (CRL) (JS24, ZXNZ24). In that setting, one assumes K domains E = {Ek :

k ∈ [K]} and a dataset X(k) = {x(k,i)}Nk

i=1 associated with the k-th domain generated from the
structural equations

z(k,i) = Akz
(k,i) +Ω

1/2
k ϵ(k,i), x(k,i) = Gz(k,i), k ∈ [K], (1)

where (Ak)ij = w
(k)
ij if there exists a direct causal edge zj → zi in the latent graph G and otherwise it

is zero, Ωk is a diagonal matrix encoding the variances of source variables. G is the shared mixing
matrix. For convenience, we assume that the nodes of G is sorted in a topological order, i.e., zj → zi
implies j < i. CRL seeks to uncover both the causal graph G and the mixing map G. Table 1
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variables ε.

Mk = Bk · H

Common unmixing matrix

(b) Decomposition of Mk that we
need to recover.

ε z x
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H⊤(HH⊤)−1 is the mixing matrix.

M1 M2 M3 Ortho-
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h1Principal
Component

h2 h3

(d) Finding orthogonalized matrices and extracting principal components.

Figure 6: Illustration of our setting and the key row-residual extraction step in our algorithm

summarizes the parallels and distinctions between this CRL framework and our LM capability
model.

Causal representation learning Our context: learning latent LM capabilities

Domain set E Each domain Ek ∈ E is defined by a base modelMk and the ob-
served dataset Xk that contains the performance of all LM {θi,k}Nk

i=1

that use θ∗k as base model.

Observed dataset X(k) = {x(k,i)}Nk
i=1, k ∈ [K] x(k,i) ∈ Rd contains the known benchmark accuracies of the θi,k.

Causal factors Z(k) = {z(k,i)}Nk
i=1, k ∈ [K] z(k,i) is the unobserved d0-dimensional capability vector of θi,k

that possesses some causal structure. We assume that d0 ≤ d.

Mixing matrix G (invariant across different do-
mains)

The observed benchmark performance is a linear transformation of
the underlying capability factors. This linear dependency does not
change no matter what base model is chosen.

Identification of exact causal models We define the notion of inexact causal models, and the objective is
to minimize the inexactness.

Table 1: A comparison between linear CRL and some key elements in our context.

Prior work of (JS24) showed that for exact linear SCMs, assuming that the domains Ek satisfy a
richness assumption, the latent causal factors are identifiable up to a benign ambiguity set, which
for instance implies that one can recover the mixing matrix G up to a left multiplication of lower-
triangular matrix for the causal model in Figure 5. However, the identification algorithm presented
in (JS24) is sensitive to the exactness assumption. We propose a novel identification algorithm, which
we call Hierarchical Component Analysis (HCA), that is more robust to the inexactness of the SCM.
The main ideas of HCA are discussed in Section 3.1, and more details can be found in Appendix C.
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3.1 Hierarchical Component Analysis (HCA)

In this section, we introduce the main ideas behind HCA, an algorithm for recovering hierarchical
latent factors.

1. ICA-based unmixing. As a first step, we apply Independent Component Analysis (ICA,
(HHH+09)) separately to each domain k ∈ [K] to obtain an unmixing matrix Mk that maps inde-
pendent source variables to observed benchmark data x, as shown in Figure 6a. Under standard
non-Gaussian assumptions in the ICA literature, these source varisbles are uniquely identified as
ϵ(k) up to permutations, implying that Mk = Pk Bk H , where Pk is an unknown permutation
matrix, Bk = Ω

−1/2
k (I −Ak) is lower-triangular, and H = (G⊤G)−1G⊤ is the right inverse of G.

Our goal is to recover the matrices Bk and H from Mk, as they allow us to recover the whole DGP
as shown in Figure 6c. In partcular, the latent factors are recovered via z = Hx.

2. Row-residual extraction. For any matrices Mk, k ∈ [K], we derive a testable equivalent
condition for admitting the decomposition Mk = BkH . specifically, for each component index
i ∈ [d0], we can compute the residual rk,i of projecting the i-th row of M∗

k onto the span of its first
(i− 1) rows. Then such decomposition exists if and only if [rk,i]Kk=1 is rank 1 for all i, and hi can be
recovered (up to scale) as its principal singular vector. This process is visualized in Figure 6d.

3. Permutation alignment and factor refinement. Since each M∗
k is known only up to row

permutation, we search over all permutations of the rows of Mk. For each case, we apply the
previous step to obtain an estimate of H , and then refine each domain’s weight matrix by solving
minBk lower-triangular ∥Mk − Bk H∥2F , thereby fitting the best hierarchical structure to the observed
unmixing matrices. Finally, we choose the set of permutations that induces minimal MIC.
The full description HCA appears in Algorithm 2, and Appendix C.2 proves that, under an exact
SCM, HCA is guaranteed to identify the underlying causal factors up to some benign ambiguities.
Specifically, for the causal graph in Figure 5, H is recovered up to a left multiplication of lower-
triangular matrix. Equivalently, each identified latent causal factor for zi is a mixture of zj , 1 ≤ j ≤ i.
As shown in (JS24), this ambiguity is not a limitation but rather an intrinsic property reflecting
equivalent models that generate identical distributional outcomes.
When the SCM is inexact, HCA recovers a data generating process

z(k,i) = B̂−1
k ϵ̂(k,i), x(k,i) = Ĝz(k,i), k ∈ [K],

so that ϵ̂(k,i) = B̂kĤx(k,i). On the other hand, the ICA recovers ϵ(k,i) = Mkx
(k,i) with independent

source components, so one can see that ϵ̂(k,i) = Jkϵ
(k,i) where Jk = B̂kĤM⊤

k (MkM
⊤
k )−1. This

provides a guarantee on the MIC (introduced in in Definition 2):

Proposition 1. Suppose that the ICA step is exact, then HCA recovers a linear αk-inexact SCM for the k-th
domain, where αk = 1

d0

∑
i ̸=j(J̃k)

2
ij , (J̃k)i = (Jk)i/∥(Jk)i∥2. It follows that α = maxk∈[K] αk is a valid

MIC.

Proposition 1 provides a quantitative measure of how well the recovered causal model can explain
the variations in the observed benchmark data X(k), k ∈ [K].
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Figure 7: The causal graphs that we recover for each domain. The numbers represent the weights of
each causal edge. For instance, in the Llama-3-8B domain, z2 = 2.76z1 + 24ϵ2.

4 Experimental Results

4.1 Recovery of the Data Generating Process

Given its theoretical justification in the previous section, we now use HCA to recover a causal model
with d0 = 3 nodes that explains the observed benchmark performance of models within domains in
Sinv. We observe that running our algorithm on the subset of {1, 2, 4, 5}, with Qwen2-7B excluded,
achieves a minimal MIC of 0.04. This likely indicates that Qwen2-7B may deviate from the shared
causal pattern of the other four base models (Llama-3-8B, Llama-3.1-8B, Qwen2.5-7B, Qwen2.5-14B).
Moreover, in view of the ambiguity discussed in Section 3.1, we run an OLS zi ≈

∑
j<i ajzj+γBxB+c

where xB represents the performance on benchmark B. For each i, we pick B that maximizes the R2

and replace zi with zi −
∑

j<i ajzj to attain best-possible alignment between the recovered latent
factors and their most indicative benchmarks.
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(d) Regressing z3 on MATH.

Figure 8: The unmixing matrix and the alignment between benchmarks and capabilities via OLS.
We also compare the fitted OLS with the latent factor values of other base models.

The causal graphs that we recover are shown in Figure 7. The source factors ϵi’s are normalized
to have unit variance. In Figure 8a, we present the unmixing matrix (i.e., linear mapping from
benchmarks to latent capabilities), from which interesting patterns can be observed: z1 is a mixture
of all five benchmarks except IFEval with BBH and MMLU-Pro contributing the most, z2 is a
mixture of IFEval and MATH Lvl 5, and z3 is almost identical to MATH Lvl 5. We will revisit these
observations in the next subsection. Figure 8 further shows the results of OLS, where z1, z2, z3 are
observed to correlate strongly with BBH, IFEval and MATH Lvl 5, respectively. It is also important
to notice that the causal conclusions we draw only apply to the four base models being considered:
Figure 8 shows that the fitted OLS can have poor performance on some other base models.

4.2 Towards a Causal Hierarchy of Interpretable Capabilities

In the previous subsection, we explored the correlation between benchmark performance and
the inferred latent factors. However, practically interpreting what a causal intervention entails
within this framework remains unclear. The broader challenge of interpreting and intervening on
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latent factors is a longstanding and unresolved issue within causal representation learning, with no
universal methodology currently available. By further analyzing the Llama-3 and Qwen2.5 models
included in leaderboards, we propose hypotheses regarding these latent capabilities, supported by
reliable empirical evidence.

4 2 0 2 4 6 8 10
log(Pretraining Compute Estimate)

0

10

20

30

40

50

B
B

H
 S

co
re

R2
overall = 0.572

Model  (coeff c) = -1.710

BBH vs. log(Compute) (Fine-tuning)
Pretrained (T=0)
Fine-tuned (T=1)
Fit (T=0)
Fit (T=1, =-1.710)

Figure 9: Sigmoid scaling law for
BBH performance.

Interpreting z1 (Foundational General Capability). As a root
node in the causal graph, z1 a root node in our causal graph,
likely represents a foundational, generalized capability. This
interpretation is supported by its positive influence across
nearly all benchmarks (see mixing matrix in Figure 8a), con-
sistent with the expectation that enhancing a general capabil-
ity should broadly improve downstream task performance.
Interestingly, we find that model performances on bench-
marks well-aligned with general capabilities, such as BBH,
roughly follows a sigmoid scaling law described by: Y ≈
L/(1 + exp(−k(logC − logC0)) + τT + b, where L, k, C0, b, τ
are unknown parameters, C is the pretraining compute and T
is a binary variable distinguishing fine-tuned models (T = 1)
from from pretrained-only models (T = 0) as shown in Sec-
tion 4.2. This relationship suggests that LMs’ general capabilities are predominantly determined
by pretraining compute resources and experience comparatively modest enhancements during
subsequent post-training procedures.
Interpreting z2 (Instruction Following). z2 strongly correlates with IFEval, suggesting it embodies
instruction-following capability. We extract instruction-tuned models from the Open LLM leader-
board, excluding those specific for math reasoning, which act as proxies of intervention on z2. These
models show minimal changes on BBH, MMLU-Pro, GPQA and MUSR for the first three base
models, aligning with its mixing pattern shown in Figure 8a. We also conduct supervised fine-tuning
(SFT) directly on IFEval and observe similar patterns.

Model Config BBH IFEval MATH GPQA MUSR MMLU-PRO

Llama-3-8B
Base 0.46 0.12 0.05 0.33 0.37 0.33

IFEval SFT 0.49 0.50 0.05 0.32 0.38 0.33
Instruct 0.51 0.53 0.11 0.30 0.40 0.35

Qwen2.5-7B
Base 0.54 0.33 0.23 0.32 0.44 0.44

IFEval SFT 0.55 0.50 0.28 0.33 0.43 0.44
Instruct 0.52 0.61 0.33 0.30 0.42 0.43

Qwen2.5-14B
Base 0.61 0.36 0.29 0.40 0.45 0.53

IFEval SFT 0.63 0.55 0.32 0.36 0.43 0.52
Instruct 0.64 0.82 0.55 0.32 0.41 0.49

Gemma-2-9B
Base 0.53 0.16 0.13 0.36 0.44 0.41

IFEval SFT 0.52 0.63 0.12 0.33 0.42 0.40
Instruct 0.59 0.57 0.17 0.34 0.42 0.41

Table 2: Performance comparison of language models before and after
fine-tuning with IFEval SFT. BASE and INSTRUCT model results are
sourced from the open LM leaderboard. Reported values represent
averaged performance across all INSTRUCT models, excluding special-
ized math reasoning variants.

Interpreting z3 (Advanced
Mathematical Reasoning).
z3 highly correlates with the
MATH Lvl 5 benchmark,
suggesting it represents ad-
vanced mathematical rea-
soning capability. Isolat-
ing this capability through
fine-tuning is challenging;
targeted mathematical fine-
tuning often causes catas-
trophic forgetting (ZTL+23),
reducing performance on
other tasks and likely af-
fecting z1 and z2. Iden-
tifying fine-tuning strate-
gies that selectively enhance
mathematical reasoning (z3)
without negatively impact-
ing other core capabilities
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(z1, z2) remains a critical open question. Furthermore, both observational instruct model per-
formance and interventional SFT demonstrate substantial improvement on MATH, supporting
the hypothesized causal link from z2 (instruction-following) to z3 (mathematical reasoning). This
influence likely occurs because mathematical tasks demand precise adherence to instructions for
correct formatting and problem interpretation, where misunderstandings severely impact accuracy.
Additionally, the causal effect of z2 on z3 is larger for Qwen models than for Llama models, consistent
with the weights of the causal graphs shown in Figure 7.

5 Discussions

In this work, we initiate the study of causal relationships between LM capabilities. We conclude this
work with a few takeaways and remarks that may be useful to practitioners.
For post-training evaluation: Our results demonstrate that the impact of any fine-tuning inter-
vention can differ substantially across base models. Evaluation studies therefore are expected to
specify exactly which pre-trained checkpoints their methodology applies to. To quantify these
heterogeneous effects, one can employ standard causal-inference tools – such as estimating the
conditional average treatment effect (CATE) – to measure, with statistical rigor, how fine-tuning
impacts performance on each base models.
For model developers: The directed, hierarchical structure of capabilities we uncover suggests
a clear development priority: given sufficient compute budget, one can focus on scaling up pre-
training FLOPs which are more correlated with upstream parent node z1 performance and can,
and gains there cascade to more specialized abilities. That said, not every capability is equally
malleable. Some – like instruction-following – correlate less with model scale (i.e., FLOPs) and
exhibit large noise-factor variances (the z2 node in Figure 7), indicating they respond more readily
to post-training. On the other hand, given limited budgets or for small models, our noise-weight
estimates suggest that we may need other interventions like instruction tuning to further improve
downstream performance.
For model evaluators: Due to the inherent hierarchical structure of evaluation suites, it is important
to examine fine-grained performance beyond aggregate numerical scores. For example, gains on
the MATH benchmark may partly stem from improved instruction-following, which, while related
to, is not equivalent to the mathematical reasoning the benchmark aims to evaluate. Secondly,
as specialized abilities are causally affected by upstream ones, evaluators can therefore prioritize
designing benchmarks that evaluate general, foundational capabilities, such as BBH and MMLU-Pro.
These benchmarks reflect more substantive improvements rather than artifacts of limited domain
adaptation.
We leave as future work the use of a tapestry of tools in causal inference, such as matching (Stu10),
stratification (FR02), doubly robust estimation (BR05), etc, to derive more scientific insights from
observational language model benchmark data.
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A Related Work

Benchmark-driven LM capability studies. Benchmarks give researchers a shared scoreboard, letting
everyone check claims about better language models instead of relying on hype. Early scaling-law
studies showed that test loss falls in a smooth power curve as model size, data, and compute grow,
setting a baseline for how capability should rise (KMH+20). Later work found many frontier models
were under-trained for their size and mapped out a compute-efficient path that the Chinchilla model
follows (HBM+22). Instead of running new model sweeps, (RMH24) proposed observational scaling
laws involving latent capability factors, that depend on the model famility and are obtained by PCA.
They showed that benchmark performances are inherently low-rank and 3 principal components
are sufficient to obtain good fitting performance. This approach is also adopted by some follow-up
works on new tasks (RBK+25) and larger sets of models (PSC+24). (DODH25) further proposed an
adjustment of the scaling law based on the model release time, given the fact that later models are
more likely to be "trained on test tasks".
While pretrained LMs exhibit predictable scaling laws post-training presents a more complex picture
regarding such predictive capabilities. For fine-tuning, performance generally scales with model
size and fine-tuning data (as suggested by (ZLCF24)), but the "transfer gap" between pre-training
and downstream tasks is a key variable (Bar24), and pre-training metrics aren’t always reliable
predictors of post-tuning success. Instruction tuning demonstrates clear benefits from scaling model
size and the number/diversity of instructional tasks, as shown by work on FLAN (WTB+22), T0
(SWR+22), and FLAN-PaLM (CHL+24). RLHF, crucial for aligning models with human preferences
(OWJ+22), shows performance gains with larger models and more feedback. However, recent work
(HDN+24) indicates RLHF might scale less efficiently than pre-training, with potential diminishing
returns from increased data or reward model size under fixed conditions.
Recently, evaluation of post-training has been shown to be unreliable (BSB+23, HBU+25). While the
Open LLM Leaderboard provides truthful evaluation of models across different benchmarks, the
contamination issue may still prevent us to obtain a reliable assessment of model capabilities.
Connections between LM capabilities. Research increasingly shows that LM capabilities are not
isolated but form a complex, interconnected system. Studies reveal strong synergies, such as the
bidirectional enhancement between coding and reasoning abilities (ZCY+25, BCE+23), and how
strong reasoning underpins mathematical problem-solving (LAD+22). Complex skills often arise
from compositionality, where LMs combine simpler, foundational skills in novel ways (YKG+23,
AG23, CPY+23).
Evidence also points towards latent abilities or general factors influencing performance across
diverse tasks (LBL+23, PSC+24). The nature of emergent abilities – skills appearing in larger models
– is debated, with some questioning if they are genuinely novel or byproducts of other mechanisms
(WTB+22, SMK23).
Also, there are significant trade-offs: efforts to enhance safety can sometimes reduce raw capability
(CSDC25), and fine-tuning for one skill can lead to catastrophic forgetting of others (ZTL+23).
Phenomena like inverse scaling further highlight these complex interactions (MLP+23). Finally,
successful task transfer and in-context learning demonstrate that LMs leverage shared underlying
mechanisms and representations across different tasks (MLH+22, BMR+20), underscoring the deep
interrelations among their varied skills.
Causal representation learning. Causal representation learning (CRL) aims to recover latent
variables and mechanisms that remain stable under interventions and distribution shifts, thereby
enabling robust prediction, reasoning, and control. Foundational position papers argue that learning
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disentangled causal factors is essential for machine intelligence rather than merely desirable for inter-
pretability (SLB+21, WJ22). Most existing works are devoted to establishing identifiability of causal
representations in realistic scenarios. Weakly supervised disentanglement shows that paired samples
before/after unknown interventions are sufficient to identify factors without compromising down-
stream utility (LPR+20, BdHLC22). (vKBW+23) showed that a pair of single-node hard interventions
on each latent factor is sufficient for full identifiability of the latent causal factors. Subsequent works
generalize this to the case of single-node soft interventions (ZGS+23, SSBU23, BRR+23). Recently,
there has been a surge of interest in studying identifiability under multi-node interventions, which
is much more practical (JS24, ZXNZ24). Closely related to CRL, invariant Risk Minimization (IRM)
and its game-theoretic variants formalize how multiple training environments can pin down causal
predictors (ABGLP19, ASR+21).

B Implementation Details

We release our code at https://github.com/hlzhang109/causal-eval.
Supervised Fine-tuning. We use lm-eval-hardness to evaluate models before and after fine-tuning.
We first test base model performance and observe that it can match the performance in Open LM
Leaderboard. We train all models with standard hyper-parameters for SFT - 3 epochs, learning
rate 2e-5. Moreover, noticing that the IFEval dataset lacks ground truth responses followed by
the instructions, we query GPT-4 to generate responses with the prompt "You are a helpful assistant
evaluating instruction-following ability. For each prompt, provide ONLY a direct response to the specific
instruction, prefixed with ’Response: ’. Keep your response concise, clear, and strictly follow the instruction
without adding explanations or unnecessary information. Your response (excluding the ’Response: ’ prefix)
should strictly satisfy the length requirement." Moreover, we also SFT on z1 BBH. But we observe a
marginal improvement over the same BBH test sets. We hypothesize that parent nodes like z1 are
more dependent on base model FLOPs thus maybe hard to improve through fine-tuning alone.
Matching models on the leaderboard with the base models. Our algorithm for mapping LLMs
to their pretraining token counts implements a hierarchical, multi-layered identification strategy
with progressively decreasing confidence levels. The approach consists of four distinct identification
layers:

1. Explicit Base Model Detection: We first parse the model name for explicit references to base
models with size specifications (e.g., Llama-3.1-8B). This is implemented through specialized
regular expression patterns tailored to each model family’s naming conventions. For instance,
Gemma-2-9B is unambiguously matched to the Gemma-2-9B model trained on 8 trillion tokens.

2. Model Name Pattern Inference: For models lacking explicit base references, we perform broader
pattern matching on model names, scanning for family indicators (e.g., “mistral”, “qwen2.5”)
and version numbers. This layer identifies the model family but may not precisely determine the
variant, necessitating parameter-based disambiguation in some cases. For example, detecting
“llama-3” in the name identifies the family but requires parameter count verification to distinguish
between 8B and 70B variants.

3. Architecture-based Attribution: Lastly, we leverage architecture information combined with
parameter counts. This approach varies by model family:

• For Llama models, we employ stringent parameter matching (e.g., 7.8-8.3B for Llama-3-8B) to
prevent false positives, as many models adopt the Llama architecture without using Llama
weights.
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• For other architectures (e.g., Mistral, Qwen), we implement more generous parameter ranges
and higher confidence attribution, as architecture adoption typically indicates weight inheri-
tance.

• Size-variant mapping is crucial for families like Gemma-2, where pretraining compute differs
by size (2B: 2T tokens, 9B: 8T tokens, 27B: 13T tokens).

The algorithm traverses these layers sequentially, defaulting to the highest-confidence identification
available. When all layers fail to produce a sufficient confidence match, the algorithm returns null
rather than making low-confidence attributions. This ensures precision over recall, maintaining
the reliability of identified mappings. Upon successful model identification, we retrieve the corre-
sponding pretraining token count from our comprehensive knowledge base, which consolidates
information from research papers, technical reports, and official documentation. This multi-layered
approach balances completeness with accuracy, addressing the inherent ambiguity in model naming
and metadata across the diverse landscape of contemporary LLMs.

C Details of HCA and Its Theoretical Guarantee

C.1 HCA: Hierarchical Component Analysis

In (JS24), the authors introduced the LiNGCReL algorithm identfiability guarantees in Theorem 1
for exact SCMs. Here we introduce hierarchical Component Analysis (HCA) that is equivalent to
LiNGCReL in the exact setting, but with several modifications to make it fit into our context.
The first step, same as (JS24), is to apply linear ICA to each individual domain. Recall that ICA’s
goal is to the independent signals; in our setting, it recovers the ICA unmixing matrix Mk that maps
observed x to the source variables ϵ(k) defined in Equation (1). This shall be carefully distincted
from H = (G⊤G)−1G⊤ which is the unmixing matrix for CRL. When the SCM is exact, we would
have PkMk = BkH , where Pk is some permutation matrix. The main challenge of CRL is that we
only know Mk = BkH, k ∈ [K] but each Pk is unknown.
The second and main part of our algorithm is presented in Algorithm 2. The algorithm is motivated
by the observation that, since the unmixing matrix H is the same across all domains, the structure
of any row spaces of Bk, k ∈ [K], which are unknown, is captured by the row structures of the
known ICA unmixing matrices BkH . Moreover, given an already-recovered subgraph G1 of G,
one can discover some v /∈ G1 such that paG(v) ⊆ G1, if the corresponding rows in each Bk, after
projecting onto the row spaces corresponding to the the orthogonal complement of the row space
of already-recovered nodes, is rank-1. This is because this rank captures the "remaining degree of
freedom" of v conditioned on G1, which equals one if and only if all its parents are in G1.
While this idea is close to the original LiNGCReL, some key differences are worth-noticing:

1. Compared with LiNGCReL, HCA only recovers a transitive closure Ḡ of the true graph G4. It is
still possible to infer whether each edge in Ḡ indeed exists in G (see appendix). For simplicity and
due to the fundamental inexactness of our model, we do not perform this step here. Equivalently,
we are only imposing the constraint that each Bk is upper-triangular, without assuming that any
other entries are also zero.

2. The identifiability guarantee of LiNGCReL makes the restrictive assumption that the distribution
ϵ(k) does not depend on k. This assumption is indeed unnecessary; the price to pay is a more
4The transitive closure of a directed acyclic graph (DAG) G is obtained by drawing an edge i→ j for any i and j such

that i is an ancestor in j, i.e., there is a path i = i0 → i1 → · · · → ik = j in G.
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complicated approach to identify the "correct matching" between the components of ϵ(k). This
step could be computationally expensive, but works well in our context where d is small.

3. We determine the matrices Bk, k ∈ [K] by explicitly optimizing the distance between the recovered
unmixing matrix and the target unmixing matrix. Compared with LiNGCReL that sets the entries
of Bk’s as the projection coefficients in Algorithm 1, which is theoretically equivalent for exact
causal models, this extra step provides additional flexibility that optimizes the fitting quality in
the presence of inexactness.

Algorithm 1: Ortho-proj(S, {Ak}Kk=1)

Input: Ordered set S = {s1, s2, . . . , sm} ⊆ [d], index i /∈ S, Ak ∈ Rd×n for k ∈ [K].
Output: Residual matrices {Rk}Kk=1.
for k ← 1 to K do

W ← span{(Ak)s : s ∈ S}; // (Ak)s is the s-th row of Ak

Rk ← projW⊥(Ak);// Row-wise orthogonal projection

end

Algorithm 2: Hierarchical component analysis

Input: Matrices Mk ∈ Rd×n, k ∈ [K].
Output: The optimal unmixing matrix Ĥ∗ and weight matrices {B̂∗

k}Kk=1.
Let Sd be the set of all permutations of {1, 2, . . . , d}. min_mic_score←∞ ;
Ĥ∗ ← null; {B̂∗

k}Kk=1 ← null;
for each permutation combination π = (π1, . . . , πK) ∈ (Sd)

K do
// 1. Apply the current permutation to each matrix
Let M ′

k be the matrix Mk with rows permuted according to πk, for k = 1, . . . ,K. ;
// 2. Generate candidate Ĥπ based on permuted matrices
for j ← 0 to d− 1 do

Sortho ← {j + 1, j + 2, . . . , d};
{R′

k}Kk=1 ← Ortho-proj(Sortho, {M ′
k}Kk=1);

// Extract principal direction from the (j+1)-th rows of residuals

R̃← [(R′
1)

⊤
j+1, . . . , (R

′
K)⊤j+1]

⊤; // Stack the (j+1)-th rows

h′
j+1 ← v1(R̃); // Top right singular vector

end
Ĥπ ← [h′

1, . . . ,h
′
d]

⊤; // Construct candidate H. Optionally: Gram-Schmidt(h′
1, . . . ,h

′
d)

// 3. Compute optimal upper-triangular B̂k,π

Let T (d) be the set of d× d upper-triangular matrices. ;
for k ← 1 to K do

B̂k,π ← argminB∈T (d) ∥M ′
k −BĤπ∥2F ; // Best upper-triangular estimate

end
// 4. Compute the MIC score for this permutation using Proposition 1

current_mic_score← ComputeMIC({M ′
k}Kk=1, {B̂k,π}Kk=1, Ĥπ) ;

// 5. Update if this is the best score found so far
if current_mic_score < min_mic_score then

min_mic_score← current_mic_score ;
Ĥ∗, {B̂∗

k}Kk=1 ← Ĥπ, {B̂k,π}Kk=1 ;
end

end
return Ĥ∗, {B̂∗

k}Kk=1
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C.2 Identifiability Guarantee for HCA

In this subsection, we provide our main identifiability result for HCA in the special case when the
graph G is known to be a complate DAG with i → j for all i < j. Equivalently, this means that each
Ak is lower-triangular.

Assumption 1. (Node-level non-degeneracy, adapted from (JS24, Assumption 5)) We assume that the matri-
ces {Bk}Kk=1 are node-level non-degenerate, i.e., for all node i ∈ [d], we have dim span ⟨(Bk)i : k ∈ [K]⟩ =∣∣paG(i)∣∣+ 1, where (Bk)i is the i-th row of Bk.

As shown in (JS24), this assumption holds as long as the K weight vectors at node i across K domains
do not lie in a low-dimensional vector space, which generally holds. To ensure identifiability, we also
require that the components of noise variables are non-Gaussian and have different distributions.

Assumption 2. For all k ∈ [K], each component of ϵ(k) follows a different distribution, and all of them are
non-Gaussian.

Remark 2. With a more involved procedure, (JS24) showed that one can identify zi, i ∈ [d] up to a "sur-
rounding node ambiguity" in the case when G is unknown. Specifically, this means that the G can be fully
recovered and the identified factor z′i is some linear combination of zj ’s with j ∈ surG(i) := {i} ∪ {i′ ∈
paG(i) : chG(i) ⊆ chG(i

′)}. Moreover, this ambiguity is intrinsic in this setting.

Our main result is stated below:

Theorem 1. Suppose that K ≥ d, then if the ICA step is exact, one can recover the mixing matrix G up to a
left multiplication of lower-triangular matrix. Equivalently, it recovers latent factors z′1, · · · , z′d where z′i is a
linear mixture of the true latent factors zj , j < i.

The remaining part of this subsection is devoted to proving Theorem 1.
By our assumption of the causal model, we know that in the k-th domain, the observations and
the noise variables are related via ϵ(k) = BkHx. Since we assume that the ICA is exact, the
uniqueness of ICA in the non-Gaussian setting (EK04) implies that the umixing matrix that leads
to independent source variables must be unique up to row permutations. In other words, there
exists some permutation matrix P ∗

k , such that P ∗
kMk = BkH, ∀k ∈ [K]. Without loss of generality,

we also assume that H is orthonormal, since otherwise one can always consider a QR factorization
H = UH̃ where U is lower-triangular and H̃ is orthonormal, and one can treat BkU as the new
Bk.
Recall that our algorithm goes through all possibilities of permutations Pk, k ∈ [K] and pick one
with the smallest MIC. To begin with, it is not hard to see the following fact:

Proposition 2. Suppose that M ′
k = P ∗

kMk, then running the subroutine in Algorithm 2 on M ′
k, k ∈ [K]

would give a zero MIC.

Proof. Recall that M ′
k = BkH . We will prove by induction that each row h′

i of the recovered matrix
Ĥπ in Algorithm 2 is parallel to hi (*).

For i = 1, since Bk is lower-triangular, and its diagonal entries Ω−1/2
k are nonzero, so the last rows

of BkH, k ∈ [K] is a nonzero multiple of h1. By definition, h′
1 is the principal component of these

rows, which is obviously parallel to h1.
Suppose the conclusion holds for all j < j0, we now prove it for j = j0. Since Bk is lower-triangular,
the induction hypothesis implies that for each k ∈ [K], span⟨(M ′

k)i : i < j⟩ = span⟨hi : i < j⟩. By

24



definition, (Rk)j is the orthogonal projection of (Mk)j onto this subspace. Notice that (Mk)j ∈
span⟨hi : i ≤ j⟩, is then easy to see that this projection is nothing but a constant multiple of hj ,
since this is the unique direction in span⟨hi : i ≤ j⟩ that is orthogonal to span⟨hi : i ≤ j⟩. Hence by
definition, we have h′

j = αjhj for some scalar αj . This concludes the proof of (*).

From (*), it is easy to see that the best lower-triangular estimate B̂k,π is equal to B up to some
row-wise scaling, and that B̂k,πĤπ = M ′

k. Hence the MIC is zero by definition.

To complete the proof of Theorem 1, we need to show that any permutation that achieves a zero
MIC successfully recovers the causal graph up to transitive closure. Specifically, suppose that some
permutation matrices Pk, k ∈ [K] leads to a zero MIC, let Qk = PkP

∗
k , then Mk = QkBkH . We

show that

1. Q1 = Q2 = · · · = Qd, and
2. Suppose that the j-th row of Q1 is eij , then i1, i2, · · · , id is a topological ordering of the graph G,

meaning that paG(ij) ⊆ {i1, · · · , ij−1}.

We say that a row index j is "good" if the j-th row of Qk, k ∈ [K] are equal and the second condition
above is satisfied up to j (i.e. i1, · · · , ij is an ancestral set of G), and is "bad" otherwise. Then it
suffices to show that all j ∈ [d] are good.
Suppose the contrary holds, let j = j0 be the smallest bad index. A zero MIC implies that k ∈ [K],[

j∑
i=1

(B̂k)jiĥi

]
M⊤

k (MkM
⊤
k )−1 = λkjej .

Hence,[
j∑

i=1

(B̂k)jiĥi − λkj(Mk)j

]
M⊤

k (MkM
⊤
k )−1 = 0 ⇒

j∑
i=1

(B̂k)jiĥi − λkj(Mk)j ∈ V ⊥, (2)

where V is the row space of H . The last step holds since the row space of Mk is also V . However, by
induction hypothesis, the first (j−1) rows of Mk are exactly the i1, i2, · · · , ij−1-th rows of BkH . The
construction of Ĥ and B̂k imply that the s-th (s < j) row of Ĥ is equal to the is-th row of H , and
the first (j − 1) rows of B̂k are equal to the i1, i2, · · · , ij−1-th rows of Bk. Let Vi = span⟨ĥ1, · · · , ĥi⟩,
then we have that

projV ⊥
j−1

(
j∑

i=1

(B̂k)jiĥi − λkj(Mk)j

)
= projV ⊥

j−1

(
(B̂k)jjĥj − λkj(Mk)j

)
= (B̂k)jjprojV ⊥

j−1
(ĥj)− λkjprojV ⊥

j−1
(Mk)j .

(3)

However, equation 2 implies that this quantity is equal to zero. As a result, we have

rank
〈
projV ⊥

j−1
(Mk)j : k ∈ [K]

〉
= 1.

Let the j-th row of Qk be ejk , k ∈ [K]. Then the above equation becomes

rank
〈
projV ⊥

j−1
(BkH)jk : k ∈ [K]

〉
= 1. (4)

In the following, we show that this property can only hold when j is good. Note that

projV ⊥
j−1

(BkH)jk =
∑

i∈p̄aG(jk)\{i1,··· ,ij−1}

(Bk)jk,iprojV ⊥
j−1

(hi), (5)
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(c) Llama-3-8B
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(e) Qwen2.5-7B
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Figure 10: Results for running PCA on individual domains.

where p̄aG(i) = paG(i)∪{i}. For k ̸= l, equation 4 implies that projV ⊥
j−1

(BkH)jl and projV ⊥
j−1

(BkH)jl
are colinear, but since H has full row rank, projV ⊥

j−1
(hi), i ∈ [d] \ {i1, · · · , ij−1} are independent,

so we must have p̄aG(jk) \ {i1, · · · , ij−1} = p̄aG(jl) \ {i1, · · · , ij−1}. In particular, jk ∈ paG(jl) and
jl ∈ paG(jk), so we must have jk = jl. Thus j1 = j2 = · · · = jK .
By Assumption 2,

rank ⟨(BkH)j1 : k ∈ [K]⟩ =
∣∣paG(j1)∣∣+ 1,

so that

rank
〈
projV ⊥

j−1
(BkH)jk : k ∈ [K]

〉
≥
∣∣paG(j1)∣∣+ 1−

∣∣paG(j1) ∩ {i1, · · · , ij−1}
∣∣ .

Hence it mus be the case that paG(j1) ⊆ ∩{i1, · · · , ij−1}, concluding the proof.

D Additional PCA Analyses

In this section, we examine different ways to choose the domains from the open LM leaderboard
and discuss our findings.
Domain-specific PCA. While Figure 2a indicates that the complete leaderboard dataset is approxi-
mately low-rank, this global characteristic does not inherently imply a similar low-rank structure
for benchmark performance data within individual domains. It is plausible that some domains
possess full-rank data, but these higher-rank properties are obscured or averaged out when the
entire leaderboard is considered. To investigate this, we performed PCA on the eight domains
containing the largest number of model entries. As illustrated by the analysis of their leading
principal components in Figure 10, all examined domains are effectively rank-3, with the exception
of Gemma-2-9B, which exhibits an approximate rank of 2.
PCA for more base models. We first provide an extended version of Figure 3 for 20 most frequently
used base models of the open LM leaderboard.
Mixture of Experts (MoE). We investigate the MoE architecture, which is used by Mixtral, and more
recently, by Deepseek. The information of whether a model uses the MoE architecture is directly
available from our leaderboard. In Figure 12a, we plot the principal component subspace distances
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Figure 11: Pairwise cosine distance matrix for 20 base models.

between MoE models and non-MoE models. We also include two architectures upon which a vast
majority of MoE models are built. We can see that there is little difference in the principal component
subspaces.
Different relative sizes of N and D. While the pretraining compute C ≈ 6ND is well-known to
directly affect the model performance, the precise roles of N and D remain unclear. Our PCA results
in Figure 12b considers four domains of data that contain models with small N and large D, large N
and small D, small N and small D, large N and large D respectively. The finding is intriguing – it
shows that the small N , large D domain has a principal component subspace that is quite different
from the other domains. Further investigation by controlling for base models show that this is just a
coincidence, as shown in Figure 12c. In this figure, we consider domains corresponding to the two
most frequent base models for each domain used in Figure 12b. We find that while three principal
component subspaces in Figure 12b look similar, they are actually the mixture of domains with very
different principal component subspaces. This further hightlights the importance of controlling for
the base model in causal analysis, as in the approach of our main work.
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Figure 12: PCA Results comparing principal component subspaces for different criteria.

Different uploaded time. Lastly, we define domains according to which year the model is uploaded.
In Figure 12d, we find that there is a clear watershed between 2023 and 2024. Similar findings are
also made in (DODH25), where the authors argue that after November 2023, "training on test task"
becomes more prevalent.
It should be noticed that similarity of PC subspaces is a necessary but not sufficient conditions for
our causal analysis. Domains with similar PC subspaces may not be explained by a linear causal
model. Moreover, we apply causal analysis to domains defined by base models primarily because
this helps us remove all confounders related to the pretraining stage. On this other hand, difference
in PC subspaces likely indicate some heterogeneous causal patterns. We leave the analyses of these
patterns to future work.

E Scaling Laws and The Effect of Fine-tuning

Existing predictive models for language model performances are typically restricted to pretrained
models. This is not unexpected, since it is hard to characterize the performance gains in post
training in terms of the relevant factors. In this section, we point out some of the key challenges in
understanding the effect of fine-tuning.

Figure 13: The average benchmark performance of fine-tuned models on the open LM leaderboard
with three base models in different sizes.

As illustrated in Figure 13, models fine-tuned on more powerful base models tend to exhibit
uniformly better performance across all benchmarks. In other words, base model is a common
confounder of all benchmark performances. We observe that base model also confounds the amount
of improvment one can achieve on all benchmarks. To illustrate this point, we estimate the average
treatment effect (ATE) of T on all six benchmarks of the open LM leaderboard using the backdoor
adjustment formula E[Y | do(T )] =

∫
E[Y | T,X = x]pX(x)dx, where X = log(C) is the log
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pretraining compute and pX(·) its density. As illustrated in Figure 14, fine-tuning yields substantial
gains on math reasoning and instruction-following benchmarks, while producing little to negative
change on general reasoning and QA-based tasks. Examining Llama- versus Qwen-based variants
separately, we observe that Qwen models gain more from fine-tuning on math reasoning and
instruction-following, yet incur larger drops on general reasoning.

Remark 3. Caution is warranted when interpreting the causal implications of the estimates presented
in Figure 14. These values represent true Average Treatment Effects (ATEs) only when the conditional
ignorability assumption—fundamental to causal inference—is satisfied. In our context, this assumption
requires that different base models experience equivalent "distributions of interventions" across tasks. For
example, if Qwen demonstrates superior performance gains compared to Llama on mathematics-related tasks,
conditional ignorability would be violated if researchers strategically selected Qwen models more frequently
for mathematical applications to maximize performance outcomes. We contend that this assumption is difficult
to substantiate in practice. An important open research question remains: how might we circumvent this
methodological challenge when limited to observational performance data? Developing robust approaches that
account for such selection biases represents a significant opportunity for future work in this domain.
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Figure 14: Estimates of the average effect of fine-tuning.

E.1 Heterogeneity of Fine-tuning Effects

Scaling law (KMH+20) has been widely adopted to predict the benchmark performance from
pretraining compute. Later, (RMH24, RBK+25) used sigmoid scaling laws to fit the principal
components of performance data from multiple benchmarks. Could scaling law alone explain the
leaderboard data? To investigate this question, we let C ≈ 6 · N ·D be the pretraining compute,
and fit a sigmoid regression equation Y ≈ L

1+exp(−k(logC−logC0)
+ τT + b, where L, k, C0, b, τ are

unknown parameters, and T is a binary treatment variable indicating whether a model is fine-tuned
or pretrained.
We fitted a sigmoid curve to the benchmark results of all officially released models on the leaderboard
(see Figure 15). Our findings indicate that scaling laws more faithfully describe trends on BBH,
MMLU-Pro and GPQA—than the remaining benchmarks. Our conjecture is that the former three
benchmarks are more "knowledge-driven", in the sense that many questions in these benchmarks
merely test whether the model possesses cetain knowledge. As a result, fine-tuning, mainly focusing
on reasoning and alignment, can being negligible effect. By contrast, performances on tasks requiring
other proficiencies (e.g. instruction following in IFEval, mathematical reasoning in MATH or multi-
step soft reasoning in MUSR) are much easier to improve by fine-tuning.
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Figure 15: Sigmoid scaling laws of benchmark accuracies for pretrained and fine-tuned models. Top
row: all pretrained and fine-tuned models. Middle row: Llama-based models only. Bottom row:
Qwen-based models only.

F Details for Matrix Completion

In this subsection, we provide a detailed description of the experimental setup in Remark 1. Specifi-
cally, our goal is to show how to accurately impute missing leaderboard data when the benchmark
performances of LMs are only partially observed. Indeed, this task can be naturally viewed as an
instance of matrix completion, where X ∈ RN×d is the performance matrix for N models and d = 6
benchmarks, with missing entries.
Restricting ourselves to the missing entries in one particular domain – the group of models fine-tuned
on Qwen2.5-14B – we consider a "global" and a "local" approach to perform matrix completion. In
the global approach, we apply nuclear norm regularization (NNR, (Rec11)) to the whole leaderboard
data D ∈ RN×d, while the local approach only runs NNR on the submatrix D2 that only contains
rows in I2, following the notation in Section 1.1.
We conduct synthetic experiments to simulate two different scenarios. First, for the case when
the benchmark accuracies are missing at random, we remove each entry of X independently with
probability p = 0.8, as visualized in Figure 4 (a). Second, we consider a "block" missing pattern as
visualized in Figure 4 (b), where performance on two benchmarks are fully observed, while for the
ramaining four benchmarks, the performance data for a p = 0.1, 0.2, · · · , 0.9 fraction of models is
missing. We repeat the experiment 1000 times for the first case, and for all

(
6
3

)
= 20 possible sets

of fully observed benchmarks of size 3 for the second case. Since standard NNR does not perform
well on block missing entries, we use structured matrix completion that is designed specifically for
handling this case (CCZ16). The RMSEs of the global and local approaches for these two cases are
plotted in Figure 4. We can see that for the first case, the local approach is significantly more accurate
than the global approach, despite the fact that it relies on fewer rows. For the second case, the local
approach also performs better on average.
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In Figure 16 we further plot the RMSEs for all 20 possible choices of fully observed columns. The
remaining 6− 3 = 3 columns have rows that are missing with p = 0.5 probability. We observe that
the local approach is always no worse than the global one, and in most cases, the local aproach leads
to significant improvements.
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Figure 16: RMSEs of global v.s. local matrix completion for each possible set of fully observed
columns. The caption below each figure indicates the columns that are fully observed. Each number
representing a benchmark on the leaderboard, with 1, 2, · · · , 6 standing for IFEval, BBH, MATH Lvl
5, GPQA, MUSR and MMLU-Pro respectively.

G Additional Experiment Results

G.1 Details for the HCA Recovery in Section 4

In this subsection, we provide more details and results for the recovery of the causal model in
Section 4. First, we provide the visualization of the full DGP recovered by HCA before the OLS
adjustment in Figure 17.
The OLS adjustment essentially operates on the columns of the mixing matrix in Figure 17 by
subtracting from the i-th column some linear combination of the j, j < i columns. We report the
R2 for aligning all six benchmarks with the three capability factors in Table 3a. The findings are
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Figure 17: HCA’s recovery of the DGP, including the linear SCM (second column) and mixing
matrix (fourth column) on four domains (base models): Llama-3-8B, Llama-3.1-8B, Qwen2.5-7B and
Qwen2.5-14B. Here, we have n = 6 benchmarks, d = 3 latent factors and K = 6 domains.

particularly interesting if we consider what each benchmark is supposed to measure. Specifically,
BBH and MMLU-PRO both contain tasks across different domains and are both related to language
understanding and general reasoning, which, intuitively, are more fundamental capabilities. IFEval
tests a model’s ability of answering questions in correct formats, which is built on top of the
language understanding ability. Finally, the MATH Lvl 5 benchmark requires models to answer
math questions correctly and in the correct format, which is the most ad-hoc capability built on
all the previous ones. These intuitions precisely align with the hierarchical structure of capability
factors that we recover. More discussions can be found in Section 4.2. A caveat is that this causal
structure is only guaranteed to hold for the four base models we consider. As shown in Table 3b, the
fitted OLS model can have poor performance on other base models.

IFEval BBH MATH GPQA MUSR MMLU-PRO

z1 0.36 0.96 0.56 0.73 0.57 0.96

z2 0.92 0.53 0.66 0.57 0.58 0.54

z3 1.00 0.43 1.00 0.18 0.14 0.16

(a) The R2 of running OLS on zi using zj , j > i and the
benchmark performance as controls.

In Sample Gemma-2-9B Mistral-7B Qwen2.5-0.5B Qwen2.5-3B Llama-2-7B Llama-2-13B Llama-3.2-1B

z1 0.96 0.76 0.71 −0.2 0.89 0.97 0.66 −0.01
z2 0.92 0.94 0.74 −1.18 0.73 0.98 0.45 0.9

z3 1 1 1 0.99 1 1 1 1

(b) The R2 of the fitted OLS on out-of-sample performance data with different base models.

Table 3: The precise alignment of underlying factors with established benchmarks, coupled with
their ability to extend effectively across diverse model domains.
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Figure 18: Overview of the MIC obtained by difference choices of domain indices. Here, as we
indicated in Section 1.1, indices 1, 2, 4, 5, 7 correspond to base models Llama-3-8B, Qwen2.5-14B,
Llama-3.1-8B, Qwen2-7B and Qwen2.5-7B respectively.

G.2 Complementary Results for Section 4

MIC for all other domain subsets. In Figure 18, we report the corresponding MIC for all possible
choices of domains in Sinv. We observe that the four subsets with smallest MIC are achieved by
excluding Qwen2-7B.
Additional metrics for the recovery results. Note that one potential limitation of MIC is that it
is insensitive to the orthogonal complement component of each row in B̂ − Ĥ relative to Mk.
Therefore, we present two additional metrics indicating how well our causal model fits the observed
data, as shown in Table 4. We introduce these metrics since they directly measure how close B̂kĤ is
to the true ICA mixing matrix Mk.

Node z1 z2 z3

Rank-1 error 0.05 0.13 0.02

(a) The amount of variation in R̃
defined in Algorithm 2 uncaptured
by a rank-1 matrix in each iteration.

Domain Llama-3-8B Llama-3.1-8B Qwen2.5-7B Qwen2.5-14B

Unmixing error 0.17 0.20 0.16 0.23

(b) The relative recovery error of the unmixing matrix of ICA for each domain,
calculated from ∥Mk − BkH∥F /∥Mk∥F , where Mk is the ICA unmixing matrix
of the k-th domain, Bk is the inverse of the recovered weight matrix, and H is the
unmixing matrix of CRL.

Table 4: Additional metrics on how good our causal model explains the observed data.

Low-rank approximation error of our causal model. Recall that we hypothesize that the data is
generated from a linear causal model with 3 nodes. This necessarily requires that the performance
data across all 6 benchmarks is a matrix with rank at most 3. While we have seen in Figure 2a that
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Figure 19: Approximation error of the low-rank latent factor space for the observed benchmark
performances.

this is approximately the case, here we revisit this assumption and see investigate the error induced
by this assumption.
In Figure 19, we plot the approximation errors of the subspace spanned by the values of three latent
factors zi, i = 1, 2, 3 learned via our algorithm. One can see that the low rank subspace approximates
4 out of 6 benchmarks nearly perfectly. The relatively poor fitting for the remaining two, namely
GPQA and MUSR, is partially due to the fact that the model’s accuracies on them are systematically
lower than the remaining ones. As a result, they would be ignored to some extent when picking the
principle components. In terms of the MSE, the error of fitting GPQA is comparable to the remaining
four, while that of MUSR is significantly higher.
This highlights a limitation in our current methodology: although we introduce the notion of
inexact causal graph for more flexibility, the assumption that each two latent factors have a causal
relationship is still restrictive. For instance, it is possible that z1, z2 are correlated but there exists no
causal relationship between them, and both of them causally affect z3. It will be an interesting future
direction to investigate how to identify the latent factors in these cases.

G.3 Filtering Out "badly" Fine-tuned models

We notice that some models on the leaderboard are badly fine-tuned, so that their benhmark
performances are even worse than the pretrained model. In this subsection, we provide results
of our causal analysis with these bad models removed. Removing the bad models allow us to
characterize the hierarchical relationship between capabilties that is restricted to "good" fine-tuning
strategies. The recovered DGP is shown in Figure 20. After adjusting for the ambiguity as we did
in Section 4, we obtain the causal graphs shown in Figure 21. Finally, in Figure 22, we plot the
unmixing matrix after adjustment and the relationship between each latent factor and the most
indicative benchmark.
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The overall pattern that our algorithm discovers is the same as the unfiltered approach. However,
we notice that in the filtered case, the MIC is much larger, indicating that the causal model is less
well-fitted. This is likely due to the fact that after filtering, the variance of performances on BBH
and MMLU-Pro becomes significantly smaller, so that the weights of GPQA and MUSR in z1 are
larger compared with the unfiltered case (see Figure 8a). These two benchmarks are relatively not
well-explained by our linear causal model, as we discussed in Appendix G.2.
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Figure 20: HCA’s recovery of the DGP after removing badly fine-tuned models that have average
performance lower than the pretrained model.
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Figure 21: The causal graphs recovered for different models. The numbers represent the weights
of each causal edge. For instance, in the Llama-3-8B model, z2 = 0.59z1 + 13ε2 (representing direct
influences shown).
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Figure 22: The unmixing matrix and the alignment between benchmarks and capabilities via OLS.
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G.4 Using Open LM Leaderboard v1

We also apply our method to analyze the hierarchical structure underlying the six benchmarks
used in the old version of open LM leaderboard. We choose the following six base models that are
most commonly used there: Mistral-7B, Llama-2-13B, Llama-3-8B, Llama-2-7B, Llama-2-70B and
Mixtral-8x7B. Similar to our previous case, we plot the pairwise cosine distance between domains
in Figure 23b. We denote these models by M1, · · · ,M6. We observe that except for Llama-2-7B,
the principle component subspaces of all remaining domains are pretty close to each other, so that
the invariant domain is Sinv = {1, 2, 3, 5, 6}. This is quite interesting, since Mixtral-8x7B uses MoE
architecture, which is a fundamental difference compared with the other base models.
We then run HCA on all subsets of Sinv of size ≥ 3 and plot the corresponding MIC in in Figure 23c.
We observe that choosing all domains in Sinv would still lead to a small error. The corresponding
recovered DGP is presented in Figure 24. We further adjust for the ambiguity as in Section 4,
and obtain the causal graphs shown in Figure 25. Finally, the adjusted unmixing matrix and the
alignment between latent factors and benchmarks are presented in Figure 26.
From Figure 26, we can see a hierarchical relationship from truthfulness to general reasoning
capability, and math reasoning capability. The hierarchical relationship between the latter two is
consistent with our findings on the Open LLM Leaderboard v2. By looking at the causal graphs,
one can observe that the weight of the edge z2 → z3 for the Llama-3-8B domain is much larger that
that of the remaining ones, which indicates that models fine-tuned on Llama-3-8B could have more
performance gains on math problem solving when fine-tuned to enhance general reasoning.
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Figure 23: figures for our analysis of Open LLM leaderboard v1.
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Figure 24: Results for applying our method to open LM leaderboard v1.
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Figure 26: The unmixing matrix and the alignment between benchmarks and capabilities via OLS.
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Figure 27: Correlation matrix for the tasks in the MMLU benchmark.

G.5 MMLU by Task Leaderboard

The MMLU benchmark has a total of 57 subtasks, each corresponding to a distinct subject. It
therefore makes sense to apply our methodology to these subjects and investigate their latent causal
structure. To begin with, we first investigate the correlation between the performance of different
tasks in MMLU, which is plotted in Figure 27. We observe that a majority of tasks have highly-
correlated performance, although they seemingly focus on unrelated fields. This is likely due to the
fact that MMLU primarily contains knowledge-based tasks, and crucially depends on the quality of
the training dataset. Larger datasets likely contain more data in all disciplines and can hence lead to
improvement on all tasks. In terms of causality, this means that there exists a single "knowledge"
node for the MMLU benchmark as a whole.
Math-related subjects. We first select subjects that correspond to mathematics, including:
MMLU_college_mathematics, MMLU_elementary_mathematics, MMLU_high_school_mathematics.
In this setting, we choose the set of base models to be Mistral-7B, Llama-2-7B and Llama-2-70B, which
induces a minimal MIC of 0.02. The result of HCA is summarized in Figure 28c. Counterintuitively,
it shows that z1 is close to college math, while z2, z3 likely represent elementary and high-school
math.
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Figure 28: HCA analysis of the MMLU by Task Leaderboard data of math-related subjects.

Physics-related subjects. We conduct a similar analysis for Physics-related subjects. We choose
the set of base models to be Mistral-7B, Mistral-8x7B, Llama-2-13B, Llama-2-70B, which induce a
minimal MIC of 0.05 among all domain subsets with size ≥ 4. The result of HCA is summarized in
Figure 29c. We can see that z1 is conceptual physics while z2 and z3 are both linear cominations of
high-school and college physics.
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Figure 29: HCA analysis of the MMLU by Task Leaderboard data of physics-related subjects.

Cross-subject domains. It would also be interesting to explore how different sub-
jects are related. We choose MMLU_college_mathematics,MMLU_college_physics and
MMLU_college_electrical_engineering and run HCA on these subjects. We found the a hierarchical
relationship exists in the order of math, electrical engineering and physics.

H Sensitivity Analysis of Causal Graph Recovery

While very few works in the literature study finite sample guarantees for causal representation
learning (AVST24), the accuracy of the recovered causal graph is crucial for downstream scientific
studies. In this section, we conduct a sensitivity analysis of the causal model we discover, and
discuss its implications. Specifically,

• The causal model could be sensitive to the choice of base models. We discuss possible reasons
for this.

• We find that the causal link between instruction following and math reasoning is stable.
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Figure 30: HCA analysis of the MMLU by Task Leaderboard data of three different subjects

Adding Two Base Models. We add two more base models, Qwen2.5-3B and Llama-3.2-3B, into
our causal analysis. From Figure 11 we can see that these two domains have roughly the same PC
subspace as the four domains we previously used in the main paper. Therefore, Hypothesis 1 would
not be violated. That said, one caveat is that these two domains only include 65 and 94 models
respectively, while the four previously used domains all include more than 150 models.
We run the same algorithms on these six domains, and the results are summarized in Figure 32 and
Figure 33. One can see that the pattern of the unmixing matrix, as shown in Figure 32a, is the same
as Figure 8a in z2 (≈ IFEval) and z3 (≈ MATH Lvl 5) but different in z1. In particular, rather than
being closely aligned with general reasoning benchmarks like BBH and MMLU-Pro, it represents
some sort of tradeoff between general reasoning and specialized capabilities.
Recall that given infinite samples, we show that the causal model is identifiable up to mixtures with
ancestors, wich does not include the case of Figure 32a. Recall that for picking z1, the key idea was
to find a combination of rows in Mk that are colinear. In the finite sample regime and/or our causal
assumptions are not exact, the error induced by this step could be hard to control.
In Figure 31 we present the ICA unmixing matrices Mk. We find that among the domains chosen to
conduct the causal analysis, there are two notable patterns:

1. There is a row that is approximately a weighted combination of BBH and MMLU-Pro, e.g. third
row in the matrix of Llama-3-8B. Recall that these two benchmarks are highly correlated, so
this is close to the general reasoning capability discovered in Figure 8a as z1.

2. There is another row that has positive weights on BBH and MMLU-Pro and negative weights
on IFEval and MATH (or vice versa), e.g. the second row of Llama-3-8B. This row is aligned
with the z1 that we discover here in Figure 32a.

These observations indicate that one possible cause for the sensitivity of causal graphs is the
environment non-degeneracy assumption (Assumption 2). even when the data comes from an exact
causal graph, in the finite sample case, when there exists two i’s such that span⟨(Bk)i, k ∈ [K]⟩ is
approximately rank-1, the corresponding causal factor can be hard to identify.
Note that for base models that are not used in our causal analysis, namely Mistral-7B, Qwen2-
7B, Qwen2.5-0.5B, Gemma-2-9B, Llama-2-7B and Llama-3.2-1B, the unmixing matrices do not
demonstrate these patterns. This is a paritcularly interesting observation that we left for future
studies, since it likely reveals different latent knowledges learned by different base models.
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Figure 31: The unmixing matrices of ICA for individual domains.

Since algorithm might pick either one of the above as z1, and the induced errors are comparable, it is
hard to argure which one makes more sense. Nonetheless, we find that the subspace spanned by the
first two rows of Figure 8a and Figure 32a are roughly the same, and IFEval approximately lies in
this subspace. Moreover, z3 always represents math reasoning. So, the causal effect from instruction
following to math reasoning is stable across different choices of domains. Moreover, viewing the
weight of the causal edge z2 → z3 as the causal effect of fine-tuning on instruction following, we
can see that this effect is generally much higher for Qwen models compared with Llama models, a
phenomenon that we also observe in Figure 7. We also notice that the estimated effect is roughly the
same for Qwen models in these two approaches, while for Llama models, the weights are smaller
here compared with the ones in Figure 7. Overall, further investigating the effect of finite-sample
error and violations of causal assumptions is an important direction for future research.

(a) Adjusted unmixing matrix.
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Figure 32: The unmixing matrix and the alignment between benchmarks and capabilities via OLS.
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Figure 33: Causal graphs recovered from each domain.
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